PAGE  
2

The Solaris Operating System

CS 351 – Operating Systems

Spring 2001

Andrew Trice

Jon Rossman

Gary Greene

Jake Cyrus

Alex Kozel

Table of Contents:


Solaris Overview  


3

Solaris Security 



3

Solaris Threads 



4

Deadlock Avoidance


7

Solaris Process Management

7

Solaris Memory Management 
9

Solaris File Systems 


10

Bibliography 



13

Solaris Overview

Solaris[tm] is a UNIX-based operating system made by Sun[tm] computers. Currently, Solaris is acknowledged by the industry to be one of the premier UNIX® operating environments for SPARC and Intel based architecture systems.  Solaris grew out of Sun’s older operating system, SunOS, which is now part of Solaris.  SunOS is basically the core UNIX functionality.  The Solaris package is the bundling of Sun-OS with window dressings like CDE (Common Desktop Environment) a.k.a. the GUI, and other OS “accessories” such as a web browser and word processing capabilities.  

Solaris was built with the network in mind.  It supports the latest networking protocols and standards, thus making it an ideal platform for the development of dependable, leading-edge network applications.  Designed for multiprocessing and 64-bit computing, Solaris provides a consistent environment from smaller servers to massive, clustered servers with more than 100 CPUs.  Solaris was designed with efficiency as the top priority.  Features such as live upgrade and automatic dynamic reconfiguration were developed with the intent of enabling the maximization of uptime and increase in service availability.  

The following are required to run the Solaris OS:

SPARC (32- and 64-bit) or Intel Architecture (32-bit) platforms

Disk space: 600 Mbytes for desktops; one Gbyte for servers

Memory: 64 Mbytes minimum.
Solaris 8 is the latest version to be released of Solaris.  The Solaris 8 Operating Environment delivers secure systems, while at the same time increasing service levels and reducing risk. Solaris is designed to minimize planned and unplanned downtime, reduce administration errors, and simplify troubleshooting, all in an effort to keep mission-critical applications available. The current release of Solaris provides easy-to-use interfaces and comprehensive administration tools help reduce complexity.  

Solaris uses file directories similar to DOS systems for organizing files. Each user is assigned a "home" directory in the file system, which automatically becomes their current working directory when they login.  

Solaris Security

Solaris incorporates four levels of Security:

Level 1 – This level consists of features and tools that help administrators tightly control who can log onto the system.  

Level 2 – This level describes tools that enable administrators to set the overall security state of the system.  Solaris includes the Automated Security Access Tool (ASET). ASET can automatically assess the state of the system as well as to place it in one of three pre-determined security states: low, medium, or high. When run periodically, ASET will alert the administrator to any potential security breaches. 

Level 3 – This level covers Secure Distributed services and Developers Platforms, describing how Solaris supports different authentication and encryption mechanisms.  There are many authentication services both existing and emerging. Therefore Solaris supports a flexible architecture that enables access to multiple authentication mechanisms both today and in the future. 

Level 4 – This describes the tools to control access to the physical network.  Not only are threats from outsiders a concern, but well-intentioned internal users might accidentally expose corporate data or services from within a network to the outside world. It is therefore desirable to prevent both types of problems from occurring without requiring everyone to become security experts. Sun supports this level of service - Solaris with its unbundled Solstice FireWall-1 and Solstice Sunscreen products.
Solaris Threading:

There are two ways to implement threads in Solaris.  One is Solaris’ threading API, Solaris threads, and the POSIX API, called pthreads.  Solaris threads and pthreads behave similarly in action and syntax.  However, both APIs contain functions that are not found in the other.  

The Solaris OS does allow you to mix Solaris thread functions and pthread functions in the same program.  By combining the two APIs, you can use features not found in one to enhance the other. Similarly, you can run applications using Solaris threads, exclusively, with applications using pthreads, exclusively, on the same system.

	Table 24 - Unique Solaris Threads and pthreads Features

	Solaris Threads (libthread)
	POSIX Threads (libpthread)

	thr_ prefix for threads function names; sema_ prefix for semaphore function names
	pthread_ prefix for pthreads function names; sem_ prefix for semaphore function names

	Readers/Writer locks
	Attribute objects (these replace many Solaris arguments or flags with pointers to pthreads attribute objects)

	Ability to create "daemon" threads
	Cancellation semantics

	Suspending and continuing a thread
	Scheduling policies

	Setting concurrency (requesting a new LWP): determining concurrency level
	 


	Table 25 - Solaris Threads and POSIX pthreads Comparison

	Solaris Threads (libthread)
	pthreads (libpthread)

	thr_create()
	pthread_create()

	thr_exit()
	pthread_exit()

	thr_join()
	pthread_join()

	thr_yield()
	sched_yield() POSIX.4

	thr_self()
	pthread_self()

	thr_kill()
	pthread_kill()

	thr_sigsetmask()
	pthread_sigmask()

	thr_setprio()
	pthread_setschedparam()

	thr_getprio()
	pthread_getschedparam()

	thr_setconcurrency()
	pthread_setconcurrency()

	thr_getconcurrency()
	pthread_getconcurrency()


Deadlock Avoidance:

Solaris utilizes several synchronization objects in order to prevent deadlock. These objects are mutual exclusion locks, condition variables, and semaphores.

-Mutual Exclusion Locks:

Mutual exclusion locks (mutexes), are used to serialize thread execution. Mutual exclusion locks synchronize threads, by ensuring that only one thread at a time executes a critical section of code. Mutex locks can also preserve single-threaded code. 

Users can change the default mutex attributes as well as declare and initialize  attribute objects. Often times, the mutex attributes are set in one place at the beginning of the application so they can be located quickly and modified easily. 

-Condition Variable Attributes: 

Condition variables can be used to synchronize threads among processes when they are allocated in memory that can be written to and is shared by the cooperating processes.  Condition variables are almost always used under the protection of a mutex lock.  They are used to atomically block threads until a particular condition is true.  When a condition is false, a thread usually blocks on a condition variable and atomically releases the mutex waiting for the condition to change. When another thread changes the condition, it can signal the associated condition variable to cause one or more waiting threads to wake up, acquire the mutex again, and reevaluate the condition.

-Semaphores: 

A semaphore is a simple integer.  With semaphores, a thread waits for permission to proceed and then signals that it has proceeded by performing a P operation on the semaphore.  When performing the P operation, the semaphore's value must be positive just before it is decremented.  This results in a value that is guaranteed to be nonnegative and one less than what it was before it was decremented. The thread must wait until the semaphore's value is positive, then change the semaphore's value by subtracting one from it. When it is finished, the thread performs a V operation, which changes the semaphore's value by adding one to it.  These operations must take place atomically, and cannot be subdivided into pieces between which other actions on the semaphore can take place.

Solaris Process Management

One of the typical functions of an operating system kernel is to perform the task of process management.  Included in process management are process creation and termination, process scheduling and dispatching, process switching, process synchronization and support for interprocess communication, and management of process control blocks.


In Solaris, once the operating system decides to create a new process, the kernel system call, fork() is made.  Once the call is made the follow functions are performed:

1. A slot in the process table is allocated for the new process

2. A unique process ID is assigned to the child process

3. A copy of the process image of the parent is made

4. Counters for any files owned by the parents are incremented to show that an additional process now owns those files

5. The child process is set to the ready state

6. The ID number of the child is returned to the parent process and a value of 0 is returned to the child process.

This is all done in the kernel mode in the parent process.


Once a process is created, it can be terminated in a number of ways.  These include termination from the system administrator using the pkill function, termination of a parent process, normal completion of the process and arithmetic error to name a few.


In the Solaris OS environment there are two types of processes, real-time processes and time-sharing processes.  Because of these two types of processes, process scheduling cannot be done on a first come priority scheme.  The Solaris OS gives a higher priority to all real-time processes over time-sharing processes.  Whenever a real-time process is ready to run, it is picked up for execution by the scheduler.  This does not assure, however that the process will finish within a determined period of time.


Process switching occurs when a process that is running is interrupted and the operating system assigns another process to the running state.  There are two types of system interrupts that can occur.  The first is a standard interrupt which is due to some event that is external to the currently running process.  The second is a trap, which is an error or exception condition generated within the currently running process. If an interrupt occurs, the interrupt goes to the interrupt handler and the goes to an operating system routine that is concerned with it.  If a trap occurs, if it is fatal, the process is switched, if not, it depends on the error as to what action is taken by the operating system.

Mode switching is a type of switching used in the Solaris operating system.  With this type of switching the operating system saves the context of the current program being executed, sets the program counter to the starting address of an interrupt-handler and switches from user mode to kernel mode to have access to higher privileged instructions.  Once this has happened, the processor proceeds to the fetch cycle and fetches the first instruction of the interrupt-handler program.

Process synchronization is used to enforce mutual exclusion and event ordering.  Solaris supports four thread synchronization primitives.  These are mutual exclusion locks, semaphores, multiple reader, single writer locks and condition variables.  The primitives for mutex lock are: mutex_enter() which acquires the lock, potentially blocking if it is already held; mutex_exit() which releases the lock, potentially unblocking a waiter; and mutex_tryenter() which acquires the lock if it is not already held.  This provides a nonblocking way of performing the mutual exclusion function.  The semaphore primitives are: sema_p() which decrements the semaphore, potentially blocking the thread; sema_v() which increments the semaphore potentially unblocking a waiting thread; and sema_tryp() which decrements the semaphore if blocking is not required.  The readers/writers lock primitives are: rw_enter() which attempts to acquire a lock as a reader or writer; rw_exit() which releases a lock as reader or writer; rw_tryenter() which acquires the lock if blocking is not required; rw_downgrade() which converts an acquired write lock to a read lock; and rw_tryupgrade() which attempts to convert a reader lock into a writer lock.  The condition variables primitives are: cv_wait() which blocks until the condition is signaled, cv_signal() which wakes up one of the threads blocked in cv_wait(), and cv_broadcast() which wakes up all the threads blocked in cv_wait().

The final function of process management is the management of process control blocks.  The process control block contains the data needed by the operating system to control the process.  This data includes the process state (e.g. running, ready, waiting), the scheduling priority of the process, scheduling-related information such as the amount of time the process has been waiting and the amount of time the process used last time is was executed, and event information that contains the identity of events the process is waiting for, before it can be resumed.

Solaris Memory Management: 


Solaris actually uses two memory management schemes.  User processes are handled by the virtual memory paging system and the kernel memory allocator handles kernel processes. 


Kernel processes routinely use many buffers and small tables.  These buffers and tables are much smaller than typical pages, and are generally used only once before being destroyed.  The main paging system could work here, but it would be terribly inefficient.  Solaris has a separate memory manager for kernel processes, the kernel memory allocator.  The kernel memory allocator uses a lazy buddy system for its memory needs.  Put simply, when memory blocks are freed, the lazy buddy system keeps these blocks separate until the last possible moment, coalescing them only when needed.  Since kernel memory behavior is particularly stable, in that the size of memory blocks requested varies very little, the lazy buddy system works well here.


For user processes, Solaris uses a virtual memory paging system.  This paging system has four main data structures: the page table, disk block descriptor, page frame data table, and swap use table.  Each process has its own page table, and this table has an entry for each page that process has in virtual memory.  The disk block descriptor describes the location of the page on a specific device.  The page frame data table lists each frame of memory and provides a description.  Lastly, each swap device has its own swap-use table.  This table has an entry for each page located on the device.


User processes use the virtual memory paging system.  This paging system utilizes a global clock-hand LRU (least recently used) replacement algorithm.  This scheme is similar to the simple clock policy mechanism with one major distinction, it maintains two pointers (clock-hands​​​​​​) instead of one.  The first clock-hand scans through the pages resetting the use bit.  The second clock hand checks the use bit.  If the page has not been reference since the use bit was reset, the page is placed on a list of pages to be replaced.  The two pointers are advanced in unison.   


Two-Handed Clock Page Replacement Algorithm


The global clock-hand LRU has two main parameters: scanrate and handspread.  Scanrate is the rate at which the pointers are advanced through the list of pages.  The pointers are advanced in unison, thus the scanrate is the same for both clock-hands.  Handspread is the gap between the two hands.  These two parameters are adjusted at runtime based on the level of free memory.  If memory is low, the scanrate is increased and handspread is decreased to free up more pages.  

Solaris File Systems


Within the Solaris operating environment, there are many types of files, as there are in virtually every operating environment.  Solaris stores these files in a file system format that conforms to UFS  ( UNIX File System ).  Solaris is also capable of using DOS FAT file formats, but UFS is preferred. There are basically three different types of files within a Solaris environment: data files, executable files, and directories.  Data files are files containing data, such as text files, script files or image files.  Executable files are files that can be executed within the Solaris environment.  To create an executable file, a source code (data) file must be run through a compiler to produce binary executable code.  Directories are files that contain information about other files within the system.  Directories create “virtual folders” to organize data on the storage medium of the computer which Solaris is operating on.  Directories store data about other files in order to organize these files into groups.  Directory files also contain the names of all files within a directory, and the location of each file on the hard disk.  


To understand more about how a directory structure in Solaris is set, you must first understand how the Solaris environment uses the disk storage medium to fetch and retrieve files.  The storage system of Solaris, as is in UFS, has three main sections: the superblock, inodes, and blocks.  The superblock of the file system explains the storage medium to the Solaris environment.  On a hard disk drive, the superblock will tell the Solaris environment how the data is stored on the disk.  The inodes contain specific information about the files in the system.  They contain the physical location of the file on the disk.  Directory files store inode information about the files that are organized.  Blocks are the storage units that Solaris uses to store files.  

By default, Solaris creates one inode per 2048 (2K) bytes of storage.  When the file system is created, the user of the environment has the option to specify the block size. If none is specified then Solaris uses an 8K block size by default.  Each block of the file system can be divided into 4K, 2K, 1K, or 512 byte fragments.  Within each fragment is where the actual data is stored.   

The directory structure of a Solaris environment is organized in the same structure as a typical UNIX environment.   The base of organization is the “/” directory (known as “root”).  Other directories can “branch” off of the root directory. The root directory can also hold other files.  Each directory that branches off of the root directory can also hold other files and other directories.  Each of these sub-directories can hold more directories and files, and so on to create the organized file system.

In the “/” directory there can be “usr”, “bin”,  and “home” directories.  The names of the directories can be changed, but it may cause significant problems to the Solaris environment’s effectiveness as an operating system.  For a file called “temp”, in the “home” directory, Solaris displays to the user the name “/home/temp” as the file name.  The Solaris file system does not directly recognize the file simply by that file name.  The name is looked up in directory files, and the appropriate inode is found.  The file system recognizes the physical location of the file by its appropriate inode number.   

In the Solaris environment, file and directory names may contain up to 255 characters.  This includes any alphanumeric character and most special characters.  Special characters such as !@#$%^&*()_-+= may even be used; though it is ill advised to use them.  Such characters may cause problems when referencing files at a later time.

The following are Solaris file system programs that can be executed by the user.

	Command 
	Action

	pwd
	Print working directory.

	cd
	Change directory.

	ls
	List directory contents.

	mkdir
	Make directory.

	rmdir
	Remove directory.

	rm
	Remove file.

	mv
	Move file.

	cp
	Copy file.

	chmod
	Change file permissions.


Below is a sample directory hierarchy that can be implemented in Solaris.  There are three directories within the root directory (“usr”, “home”, and “bin”).  The usr directory contains a “java” directory.  The home directory contains two directories (“triceam” and “rossmajd”).


Bibliography:

Bertoni, Jonathan (1998).  “Understanding the Solaris VM Paging System”. 


URL: http://www.sun.com/research/techrep/1998/abstract-55.html 

“Introduction to the Unix File System - Unix User’s Guide”
URL: http://cs-pub.bu.edu/help/unix/introduction_to_the_unix_file_system.html
Matloff, Norman (1998) “File Systems in Unix”


URL: http://heather.cs.ucdavis.edu/~matloff/UnixAndC/Unix/FileSyst.html
Phillips, Jerry L.M. (1997) “Inside Solaris: The basics of file-system tuning”


URL: http://www.elementkjournals.com/sun/9708/sun9782.htm
“Solaris Summary”


URL: http://www.operatingsystems.net/oses/solaris.htm
Stallings, William (2001).  Operating Systems.  


Upper Saddle River, New Jersey: Prentice Hall.


ISBN 0-13-031999-6

Sun Product Documentation


URL: http://docs.sun.com
Sun Corporation Web Page


URL: http://www.sun.com
Fronthand





Backhand





Front of page list





End of page list





Handspread





rossmajd





triceam





java





bin





home





usr





/  (root)









