Solaris – Tools & Structures

CS 351 - Operating Systems

Spring 2001

Section 1
By:

Jay Lee

Travis Thomas

Kevin Franklin

Chris Woodley

Greg Nesselrodt
Table of contents

I. Overview – by: Travis Thomas

a. Commercial Success
3

b. Technical Success
3

c. Availability
3

d. Scalability
4

e. Manageability
4-5

f. Security
5

g. Advantages
5-6

h. Disadvantages
6

II. File Management - by: Jay Lee

a. Solaris software: Solstice DiskSuite
6

b. Solaris File Types
6-7

c. Disk Space Allocation
7

d. File System
7

e. I-node
7-8

III. Processes - by: Greg Nesselrodt

a. Solaris Processes
8

b. Process Memory Issues
8

c. Process Context
8-9

d. Process Types
9

e. Threads
9

f. Kernel Threads
9

g. Lightweight Processes
9

h. User-defined threads
9

i. Zombie Processes
9

IV. Threads - by: Kevin Franklin

a. Thread Creation and Control
10

b. Thread Relationships
10

c. Thread Execution
10-11

d. Suspension
11

e. Preemption
11

f. Yielding
11

g. Synchronization
11

V. Mutual Exclusion – by: Chris Woodley

a. Synchronization and Mutual Exclusion
11

b. Mutual Exclusion Locks
11-12

c. Semaphores
12

d. Readers/Writer Lock
12

e. Conditional Variables
12

VI. Bibliographic Citations
13
Overview

Solaris, from Sun Microsystems, is a UNIX-based operating system designed to work with Sun's SPARC 32- and 64-bit processors and Intel’s 32-bit processors. Solaris advanced the state of the art by providing enhanced manageability, gaining a very strong commercial presence, as well as its compatibility with Java-based applications.

Commercial Success

Solaris is perhaps the most commercially successful UNIX OS on the market. It has been called "the #1 UNIX operating environment". It has also received excellent reviews from InfoWorld, and D.H. Brown Associates. It was, in fact, D.H. Brown Associates that named Solaris the best overall UNIX operating system based on an independent review they performed.

The UNIX versus NT Organization (www.unix-vs-nt.org) lists 103 prominent companies web servers and their OSes, many of these use Solaris including: AOL, Apple, AT&T, Bank of America, CBS, CNN, The Coca-cola company, FBI, Geico, Lockheed-Martin, McDonalds, MCI, MIT, Netscape, NSA, Oracle, Sony, Sprint, Time-Warner, Verisign.

In a review by InfoWorld Magazine, Solaris was named the top commercially available UNIX OS among other prominent UINX OSes. Solaris received a 10 out of 10, followed by IBM’s AIX 5L (9 out of 10), Hewlett-Packard’s HP-UX 11i (9 out of 10), SGI’s Irix 6.5 (2 out of 10), SCO’s UnixWare 7.1 (0 out of 10).
In the 2001 UNIX Function Review,
D.H. Brown Associates rated Solaris the best overall UNIX Operating System against UnixWare 7.1.1, AIX 4.3.3, Tru64 UNIX 5.1, and HP-UX 11i. Solaris was also rated first in RAS (Reliability, Availability, and Serviceability) and Directory and Security Services. The review gives Solaris a strong standing in Internet and Web-Application Services.

Technical Success

Availability

Solaris provides “hot updates”, this means that installation of updates can occur while applications continue to run. Then when installation is complete, a simple reboot enables the new version to take control. This reduces the amount of time the system is down. Solaris is also backward compatible; according to Sun Microsystems:

"For both SPARC and Intel Architecture platforms, existing applications written to the Solaris application binary interface will move to their respective Solaris 8 platforms without a recompile or rebuild, improving system reliability and saving time and money."

Scalability

Solaris is designed for multiprocessing and 64-bit computing. On their corporate web site Sun Microsystems states that the platform supports:

· One million simultaneous processes on a single system

· Up to 128 CPUs on a single system

· More than four billion network connections

· 32- and 64-bit applications

· Two-, four-, and eight-node clusters

· IPv4 and IPv6 network addresses

· Up to 512 CPUs in a clustered environment

Although these numbers are impressive it is not likely that many current systems will put the limits of Solaris to the test. But the ability to expand the OS to proportions that are, by today’s standards, incredible leaves room for virtually any expansion in the next several years.

Manageability

Solaris provides extensive management tools to allow management of the system, applications, etc. These management tools include:

· Solaris Web Start Wizards(- simplifies the installation, setup, and administration of applications written for both Solaris and Java(technology-based environments through GUI.

· Solaris JumpStart(- when Solaris Operating Environment and applications are placed on a central server, they can then be used to remotely set up a Solaris system anywhere on the network. For environments where IP addresses are centrally managed, Solaris JumpStart(software also supports installation via DHCP.

· Solaris Management Console - Java technology-based client/server application that integrates all GUI-based tools. The software takes advantage of common instrumentation in the Solaris Operating Environment. Integrated into the Solaris Management Console software is role-based access control (RBAC) enables superuser rights to be delegated to multiple users, and distributes system tasks.

· Sun Cluster 3.0 - presents a simple, unified management view of cluster-wide, shared system resources and services. All cluster resources appear as if they were on a single system.

· Sun Management Center - enhances application availability, optimizes performance and scalability, and simplifies management of your Sun hardware, the Solaris Operating Environment, and applications. Hundreds of Sun systems can be managed at once through a Java technology interface or Web browser, enabling complex tasks to be performed with ease from virtually anywhere on the network

· Solaris Volume Manager (formerly known as Solstice DiskSuite(software) – manages disk volume

· Source: Sun Microsystems, Inc., http://www.sun.com/software/solaris

Security

Solaris provides security through various methods. The Operating Environment comes with IPSec for creating virtual private networks (VPNs), Smart card authentication compatible with the open card framework (OCF) 1.1 specification, and provides "role-based access control for distributing super-user authorizations".

Trusted Solaris is an extension of Solaris that provides a much higher level of security. The Mandatory Access Controls (MAC) allows information to be processed at multiple sensitivity levels. Solaris uses two types of labels, Sensitivity and Clearances. Sensitivity labels are assigned to files, devices, windows, hosts, networks, and all other system objects accessed by users. Clearances set an upper and lower sensitivity boundary where a user can work. System administrators assign clearances to indicate the level of trust or job responsibility required by those accessing the system. The Discretionary Access Controls (DAC) use file permissions and optional access control lists (ACLs) to restrict access to information based on a user's identity or group membership. It is discretionary because the file’s owner may change permissions. Also, ROOT (super user) is not exempt from DAC restrictions. DAC is used along with MAC to control all access to system files.
Advantages

There are many aspects of the OS that were done well and benefit users of the OS. The Sparc and Intel versions are the same OS. According to an article in InfoWorld (“Six flavors run the gamut: The good, the bad, and the ugly
“), Solaris has the broadest application support of any commercial Unix-based OS. Since Sun Microsystems produces Solaris, as well as Java, the OS is very compatible with Java based applications and can make greater use of Java than some other OSes.

Also the availability of Solaris, as discussed earlier, can be very appealing to companies and system administrators. The scalability also enables any system using Solaris to be expanded from a very small size to large systems of up to 128 CPUs and 4 billion network connections. Equally appealing is the manageability of Solaris. The multitude of tools available with the operating environment allows a high level of management of various facets of the system. Solaris is also considered one of the most secure UNIX OSes, according to Sun Microsystems. And with the extension of Trusted Solaris, the level of security increases far beyond any average UNIX OS.

Another very appealing fact about Solaris is its strong presence in the commercial environment. As noted above, many prominent companies use Solaris. And the Free Binary License increases Solaris’ presence among smaller business and systems. The backwards compatibility, as discussed previously, increases the ease of upgrading and scaling.

Disadvantages

One problem with implementing the Solaris OS is that Sun’s Sparc processors don't scale as efficiently as rivals'. Also large-scale Sun systems, although they provide optimum use of many Solaris functions, they are very expensive. In a related downside to that, many advantages are lost when the majority of a network is not Sun-based. For example, Sun Management Center requires a network of Sun computers and software to work optimally. Finally, the software package included with Solaris is somewhat restrictive. The software included is mainly for system administration; very little workstation software is included.

File Management

Solaris software: Solstice DiskSuite

The file is the central element in most applications. It is imperative that the user is able to access files, save files, and maintain the files’ integrity. This is the responsibility of the file management system. The component of the Solaris Operating Environment that is responsible for file management, disk and storage management is called Solstice DiskSuite[tm]. Within the Solstice DiskSuite[tm], the UFS (UNIX File System) features a logging function. This logging function eliminates the need for checking for file corruption when rebooting after a system crash. An example of this is the scandisk process Windows goes through when rebooting after a system crash. Ultimately reboots are much shorter and system recovery is dramatically faster. Not only does Solstice DiskSuite[tm] log the transactions/updates but it also maintains a mirror copy of data on a separate disk. If a hardware failure occurs, then the software conveniently and automatically retrieves the mirrored copy. In terms of I/O performance, Solstice DiskSuite[tm] spreads the I/O load over several disks to increase the throughput available to a single process. Delays, where an I/O overloads onto a single disk, will be minimized, thus improving the overall performance. The software checks for signs of potential bottlenecks prior to the situation actually turning into a bottleneck. Another feature of this software is that a request for file system statistics may be made. Such statistics like the amount of disk space occupied by a file system, the amount of used space, and the amount of available space can be accessible to the user.

Solaris File Types

There are essentially seven different types of Solaris files. These files include ordinary files, directory, character special file, block special file, pipe files, symbolic link files, and sockets. Technically all files are simply files but what is meant by different type of file is how the operating system treats the file. The first character in the permission field denotes the type of file. Ordinary files are denoted by a “-“ symbol, directories are denoted by a “d”, character special files are denoted by a “c”, block special files are denoted by a “b”, the pipe files are denoted by a “p”, the symbolic link files are denoted by a “l”, and finally the sockets are denoted by a “s”. Directory files are also known as folders that hold a collection of files or another directory. Character special files are used to represent devices and block special files represent buffered or block devices. A pipe file is a file that allows unrelated programs to communicate with each other when they are executing. A symbolic link file contains the path to the linked file. A socket allows processes to communicate efficiently.

Disk Space Allocation

In most cases some type of allocation needs to be made before a file is created, however with Solaris the kernel allocates disk space dynamically. Dynamically means that the file allocation is made accordingly to the size of the file and grows as the file size grows. The kernel uses the buffer cache-to-cache data between block devices and memory. Data read from a file system is first transferred to the buffer cache before going into the user or kernel address space. Also the when data is read from the user to the file system, it must first be transferred to the buffer cache.

File System

The Solaris file system is organized as a hierarchy of files. The Solaris file system is composed of four items. These four items are a boot block, a super block, an I-node list (index node), and obviously the data blocks. The function of a boot block is to start an execution on a system. The super block is in charge of holding information on the state of the file system. The types of information that is held on a super block are the size of the file system, the number of files stored, the number of disk revolutions per second, and where the free space is located on the hard disk. The I-node is a data structure containing information on files stored in a file system. The I-node list consists of an index entry for every file/directory on the system, each file having one I-node associated with it. The I-node structure holds the addresses of fifteen disk blocks. The first twelve addresses refer to data blocks.

I-node

As stated previously the I-node structure holds the addresses of fifteen disk blocks where the first twelve addresses hold data blocks. The thirteenth through fifteenth address blocks are designated for single, double, and triple indirects (respectively). Each of the fifteen pointers addresses takes up four bytes of space. If the file associated with the I-node is small, the twelve data blocks will provide sufficient space. If the file associated with the I-node is too large for the twelve data blocks then the three indirect blocks will be utilized. When the indirect blocks are utilized, they contain the addresses of data blocks (or of further address blocks) that hold the contents of the file. Essentially it is a chain of addresses depending on the size of the file. Triple indirect address block can hold the largest files however the trade off is that it has the slowest access time. Conversely the first twelve data blocks hold the smallest file sizes but have the quickest access time. Some other information stored within an I-node number include the device number, file type, file size, link count, time stamps, allocated blocks, and finally the file permissions. File permissions include the common read, write, and execute permissions. File linking is the process of renaming a file without deleting the original file. A good purpose for linking a file is to keep a copy of a particular file while it is in a certain state. If many changes are made to a file, it is a lot easier to revert to a saved copy as opposed to undoing all of the changes.

The I-node list may be thought of as a kind of address-book for the actual files on disk. The actual filename is not within the I-node information. The only purpose of a filename is for the user’s convenience. The operating system recognizes the file as the I-node itself, therefore when the file is deleted only the I-node entry is deleted as opposed to the actual file data blocks on disk.

Processes

Solaris Processes

Since the process is one of the key components of any operating system, it is important to look at the way in which Solaris handles them to get a better understanding for the system. To begin with, it is important to note that the process has a great deal of importance in UNIX. Since Solaris is a derivative of the UNIX operating system, this proves true as well. Solaris provides two modes of operation to its users: a user mode and a kernel (or system) mode. Kernel mode is more privileged, and thus more secure and has access to more features than the user modes. In either mode, a fork or a forkl command either creates processes. In the case of the fork, the entire process context is duplicated with the creation of the new process, while forkl only duplicates the context of the thread that is calling for process creation.

Process Memory Issues

Solaris differs from the Stallings’s examples when it comes to memory. Any new process in Solaris is defined and given its own spot in virtual memory. Reference to the real memory is allowed, but only through specially defined set of address translation maps, which are unique to each process, and the computer systems memory management unit (MMU), which contains pointers to these translation maps. Anytime the current process changes, it is the responsibility of the MMU to update the registers to reflect the memory locations of the new process. Any kernel text and data structures are also mapped into a portion of the processes virtual memory space. Further, the kernel memory space of each process must contain two additional areas: u area and the kernel stack The u area holds all of the key information about the process (such as identification info, process registers, files controlled) while the kernel stack serves as a queue to allow the process to have access in and out of the kernel as needed.

Process Context

In Solaris, each process contains a context that describes the data and information, which it contains. The context is broken up into several areas, each of which holds specific information. The first such area is the hardware context, which contains the program counter, the stack pointer, processor status work, memory management registers, and floating point registers. Next is the user address space, which stores the program text and data. Next, the control information, containing the u area, proc structure, kernel stack and address translation maps. Next, the credential section containing user and group Ids. Finally, there are the environment variables.

Process Types

The Solaris operating system allows for processes to take on various forms, including threads, kernel threads, lightweight processes, user threads and zombie processes.

Threads

In Solaris, threads represent relatively independent sets of instructions within a program. This is the control point within a process. Threads share global resources with the context of the process. Threads offer various advantages such as not requiring as much processor time or resources to perform context switches, and the ability to process one thread while others are waiting.

Kernel Threads

Kernel Threads are essentially nothing more than the entity that is scheduled by the kernel. These use the text and global data of the kernel, but has a unique kernel stack and data structure for holding scheduling and synchronization information.

Lightweight Processes

Lightweight processes are the swappable portions of kernel threads. These can be better thought of as “virtual CPUs”, which perform the processing for the executing application. This is the form of process that can make system calls, and be blocked and swapped while waiting for resources. Solaris defines eleven states for controlling these processes: Preempt, Wakeup, Stop, Blocking, System Call, Dispatch, Runnable, Running, Active, Stopped and Continue. Most of these process states are similar to what is presented by Stallings. The only major difference is the Preempt state, which allows a process that has a higher priority to get executed first by blocking out others.

User-defined threads

User threads are user-defined threads, which are scheduled by the lightweight processes. Every lightweight process must have at least one user thread, and more can be added if necessary. These threads are used to implement priorities, implement time slicing (if programmed) and handle any segment violation signals.

Zombie Processes

Finally, a zombie process is simply a process that has been killed by its parent, but due to the parent receiving too many signals at once, has not yet invoked the proper routine to completely rid the system of the process. A process in this state is not visible or accessible by the system scheduler, but a programmer can restore the process to its natural state if need be.

Threads

Thread Creation and Control

In Solaris, like other Unix driven operating system structures, threads begin execution with a single argument at a main-like sub-routine. The creating process assigns the new thread has a unique ID, that is referenced and controlled by the creator, and the thread is allocated to a single lightweight process. Each thread has its own local data and is assigned shared memory from the creating process. The local data can be used only by that thread, but the shared memory can be read and written to by all threads of a single process. Threads can be created with scheduling priorities and are assigned a concurrency level. The concurrency level is the maximum number of threads that can run at the same time and is determined by the number of lightweight processes available. When threads are terminated with an exit call, they return to the process that created them.

Thread Relationships

Threads in Solaris are very dynamic and allow different relationships created from unbound and bound threads. A bound thread is one that is connected directly to one lightweight process. Unbound threads are multiple threads that connect to one lightweight process. As discussed in the following section, unbound threads are essentially bound to the lightweight process when in the active state. A single process may have a mixture of unbound and bound threads. Solaris is known for allowing more threads than lightweight processes.

Each type of relationship has different advantages for different programs. By creating a user-level thread that provides a 1:1 relationship between the user-level thread and the lightweight process, the programmer can provide a parallel array that can divide rows of its arrays among different threads. By using a 1:1 relationship in this example the programmer has avoided thread switching. To implement a real-time application, the programmer might create threads that are permanently bound to lightweight processes along with unbound threads. This allows some threads to have systemwide priority and real-time scheduling while the other threads are free to perform background functions and share lightweight processes.

Thread Execution

User-level threads can be created, destroyed, blocked, and activated without involving the kernel. This reduces the cost of having to allocate kernel data structures for each thread and perform thread switching. An unbound thread can be in one of four states: runnable, active, sleeping, or stopped. This unbound thread is in an active state is assigned to a lightweight process and executes only as long as the kernel thread is executing. When the unbound user-level thread leaves the active state, the thread library, which contains all of the threads divided among their priority levels, selects the next thread. The next thread is selected by using the First-In-First-Out (FIFO) algorithm. When the thread is selected, it runs on the same lightweight process. Bound threads act slightly different than unbound threads. When a bound thread moves from the active state to the sleeping state the lightweight process that it is bound to also stops running. Threads can be moved out of the active state at just about any time. They are moved out of this state by one of four following events: suspension, preemption, yielding or synchronization.

Suspension

Suspension is when one thread issues a call to suspend another. This thread is suspended until another thread issues a continue request. When the thread receives this continue request it is only moved to the runnable state and not the running state. Not until the thread receives another call to run (no higher priority threads in runnable state and this thread is the first item in the runnable queue) does it switch to the running state.

Preemption

Preemption occurs when a thread performs an action that causes a thread at a higher priority to move to the runnable state. This thread at with a lower priority is moved to the runnable state.

Yielding

Yielding occurs when a thread makes a call to the library to give up its execution to a thread in the same priority and in the runnable state. If a thread is found with these conditions, the thread making the call is placed in the runnable state. If an appropriate thread is not found, the thread continues to run.

Synchronization

Solaris has no built in mechanisms for preventing mutual exclusion or dead lock. The programmer has the responsibility to foresee and prevent any problems that may occur. The following four synchronization techniques are available in Solaris to assist the programmer: Mutual Exclusion, Semaphores, Condition Variables, and Multiple Readers, Single Writer Locks.

Mutual Exclusion
Synchronization and Mutual Exclusion

Synchronization is when two or more processes manage their activities based on the system state. Synchronization enforces mutual exclusion. Mutual exclusion (mutex) is allowing only one process access to a resource or function at a time. It is only needed for multiprogramming systems. Mutual exclusion is needed to keep data and resource integrity. Mutual exclusion and synchronization are interrelated. By insuring synchronization, mutual exclusion is met.

There are four synchronization primitives used for thread synchronization used in Solaris. They are (1) Mutual exclusion locks, (2) Semaphores, (3) Multiple readers, single writer locks, and (4) Condition variables. The primitives are controlled by the kernel for kernel threads and by the thread library for user threads (Stallings, 287).

Mutual Exclusion Locks

Mutual exclusion locks are used to prevent other threads to proceed when a thread gains a lock. Locks allow only the thread that obtains the lock to use that object. The thread that gets the lock must also be the one to get rid of the lock. A thread obtains a lock by using the mutex_enter() primitive. If a lock is already held then the whole process is blocked. Other primitives related are mutex_exit() and mutex_tryenter(). Mutex_exit() is used to release a lock. Mutex_tryenter() is like mutex_enter() except busy-wait is used for user threads of the process so the whole process is not blocked like mutex_enter() (Stallings, 289).

Semaphores

Semaphores are usually used to control access to resources. These semaphores are integers that are used to represent the number of resources free. When the count gets to zero, threads are then blocked until resources are available again (docs.sun.com). Semaphore primitives used are sema_p(), sema_v(), and sema_tryp(). Sema_p() decrements the semaphore and sema_v() increments the semaphore. Sema_tryp() is used when blocking is not required (Stallings, 290).

Readers/Writer Lock

Readers/writer lock is used to let multiple threads have access to read only objects being locked. That is the readers part of the lock. For the writer part, one thread is allowed to write while the other threads are blocked from reading or writing. This can lead to reader starvation because readers cannot resume reader until the current writer is done and there are no writers waiting to gain control (sun.com). Rw_enter() is used to get a lock for a reader or writer. To release the lock, rw_exit() is used. Rw_tryenter() is used the same way as mutex_tryenter() but for readers/writer locks. For a thread to convert from write lock to a read lock, rw_downgrade() is used and for a thread to convert from a read to a write, rw_upgrade() is used (Stallings, 290).

Conditional Variables

Condition variables are used to wait until conditions are met. They have to be used with a mutex lock. The mutex protects the shared resource. A situation that is used to explain this is when one process is filling a queue and another is emptying a queue. The two processes must communicate together to make sure the queue neither overflows nor underflows. Condition variables provide this communication. Cv_wait() blocks until a condition is met. Cv_signal and cv_broadcast() both signal cv_wait() that the condition has been met but cv_signal() wakes up one thread that has been blocked and cv_broadcast() wakes up all threads blocked (Stallings, 290). Threads can be synchronized by condition variables in processes that are allocated in writeable memory and are shared by the cooperating processes (sun.com).

BIBLIOGRAPHIC CITATIONS

Bento, Al (2000). “Solaris Lightweight Processes.” URL: http://home.ubalt.edu/abento/751/tsmpm/sld033.htm
Bento, Al (2000). “Solaris User Level Threads.” URL: http://home.ubalt.edu/abento/751/tsmpm/sld032.htm
Biggs, Maggie (2001). “Fighting the threat within.” URL: http://www.fcw.com/fcw/articles/2001/0326/tec-solaris-03-26-01.asp
CBT Systems (1997). “Solaris 2.x File Management.” URL: http://www.indiana.edu/~ucsdcas/cbt/cbtweb/curicula/courses/solfm/solfm.htm
Cromar, Scott (2000). “Solaris Processes.” URL: http://www.princeton.edu/~unix/Solaris/troubleshoot/process.html
Darrow, Barbara & Glascock, Stuart (1998). “Microsoft Admits NT Trails Solaris.” URL: http://www.techweb.com/wire/story/TWB19980728S0004
Kin,Wong (2000). “File System Management.” URL: http://www.info-discovery.com/solaris/html/node62.html
Netcraft CGI (1999). “The UNIX versus NT Organization.” URL: http://www.unix-vs-nt.org/webservers.html
Stallings, William (2001). Operating Systems. Upper Saddle River, NJ: Prentice-Hall, Inc. QA76.9C643673 2000; 00-7405; ISBN 0-13-031999-6.

Sun Microsystems Inc. (2001). “doc.sun.com.” URL: http://docs.sun.com/
Sun Microsystems Inc. (2001). “Solaris 2 Competitive Migration Program.” URL: http://www.sun.com/smcc/solaris-migration/
Sun Microsystems Inc. (2001). “Solaris Developer Connection.” URL: http://soldc.sun.com/

Sun Microsystems Inc. (2001). “Solaris[tm] Product Line.” URL: http://www.sun.com/solaris/

Yager, Tom (2001). “Six flavors run the gamut.” URL: http://www.infoworld.com/articles/tc/xml/01/01/15/010115tcunix.xml
2

