8

Mac OS X: Overview & System Fundamentals

Mac OS X is designed as both a desktop operating system and as a server operating system. It is a replacement for Mac OS 9, and a foundation for new technologies and new applications. This operating system has been in development, in its current form, for over 3 years, though Apple has been actively developing and promising a next generation operating system for the last 15 years. Mac OS X attempts to combine the reliability and performance of traditional UNIX systems with the simple and refined user experience that consumers expect from the traditional Mac OS.

Unfortunately, Mac OS X has not, as of yet, been especially successful in the commercial arena. The minor-revision, which was released to the public on March 24, 2001, is actually nearly identical to a developer beta version from almost a month before. This is evidence of the fact that Apple wished only to ship a product by a certain date, and was not concerned about the quality or functionality of the software shipped. As tested by several major online software review sites, Mac OS X is mostly complete under the hood, but has many flaws in the most visible and accessible parts of the system. According to Ars Technica (http://www.arstechnica.com), the rendering of the GUI is a serious drain on system resources. Even on the fastest system Apple offers, a 733mhz Power Macintosh G4, resizing a window can be painfully erratic and slow. Also, many applications must be launched within the “Classic” environment, an emulator that mimics Mac OS 9. As expected, this slows down the user experience considerably. With time and updates however, system performance should improve, and Apple will no doubt be listening to its users concerning what features they want from the GUI and which features they could do without.

Mac OS X is built on the time-tested and proven Mach micro-kernel architecture. The Mach micro-kernel manages CPU usage and memory, handles scheduling, provides memory protection, and provides a messaging infrastructure to the rest of the operating system. On top of the Mach micro-kernel sits what is essentially FreeBSD. This BSD layer provides file system management, networking, security policies, the standard BSD process model with process IDs and signals. It also provides the standard POSIX threads implementation which many applications (such as MySQL) find very useful. To these standard UNIX features, Apple has added several improvements. Enhancements have been added to the file system buffer cache and file I/O clustering. These enhancements include adaptive and speculative read ahead, user process controlled read ahead, and time aging of the file system buffer cache. Many additions to file system support have also been made, mostly to accommodate Apple-specific file systems such as HFS, HFS+, and Apple extensions to the ISO9660 CD file system standard.

Apple has definitely advanced the state of the art as far as graphics rendering within a desktop operating system. The graphics subsystem of Mac OS X, called Quartz, uses the PDF format for all graphics, allowing dynamic resizing, rotating and blending effects for all applications. The Core Graphics rendering portion of Quartz renders text and images by way of vectors rather than pixel by pixels descriptions. This vector based system allows Quartz to use a coordinate system described in inches or centimeters rather than pixels.

 Mac OS X supports multiple processors in a Symmetric Multi-Processing environment. Currently, Apple does ship systems with dual G4 processors.

There are many positive qualities that make Mac OS X a desirable step forward from the traditional Macintosh operating system. The underlying reliability and extensibility of FreeBSD and Mach are welcome additions to the Macintosh world after 15 years of cooperative multi-tasking (where one process can completely consume all available system resources) and un-protected memory (where one process can crash the entire system). Apple has the fundamentals down. However, by making the looks of the GUI more important than the feel, they have done a disservice to the millions of computer users who are used to the intuitive and clean interface of past Macintosh Operating Systems.

Allowable process states:

0 - Running. The CPU is currently executing this process.
1 - Runnable from main memory, stored in main memory and is ready to run.
2 - Runnable, stored in swap, ready to run but has been moved to secondary memory in the swap space.
3 - Sleeping in primary storage, waiting for an IO interrupt or other interrupt to awaken it.
4 - Sleeping in swap space, waiting for an IO interrupt or other interrupt to awaken and swap it back into primary memory to be executed.
An active process is normally in one of the five states in the diagram. The arrows show how it changes states.

A process is running if it is assigned to a CPU. A process is preempted--that is, removed from the running state--by the scheduler if a process with a higher priority becomes runnable. A process is also preempted if it consumes its entire time slice and a process of equal priority is runnable.

A process is runnable in memory if it is in primary memory and ready to run, but is not assigned to a CPU.

A process is sleeping in memory if it is in primary memory but is waiting for a specific event before it can continue execution. For example, a process is sleeping if it is waiting for an I/O operation to complete, for a locked resource to be unlocked, or for a timer to expire. When the event occurs, the process is sent a wake up; if the reason for its sleep is gone, the process becomes runnable.

A process is runnable and swapped if it is not waiting for a specific event but has had its whole address space written to secondary memory to make room in primary memory for other processes.

A process is sleeping and swapped if it is both waiting for a specific event and has had its whole address space written to secondary memory to make room in primary memory for other processes.

If a machine does not have enough primary memory to hold all its active processes, it must page or swap some address space to secondary memory:

When the system is short of primary memory, it writes individual pages of some processes to secondary memory but still leaves those processes runnable. When a process runs, if it accesses those pages, it must sleep while the pages are read back into primary memory.

When the system gets into a more serious shortage of primary memory, it writes all the pages of some processes to secondary memory and marks those processes as swapped. Such processes get back into a state where they can be scheduled only by being chosen by the system scheduler daemon process, then read back into memory.

Both paging and swapping cause delay when a process is ready to run again. For processes that have strict timing requirements, this delay can be unacceptable.

To avoid swapping delays, real-time processes are never swapped, though parts of them can be paged. A program can prevent paging and swapping by locking its text and data into primary memory. How much memory can be locked is limited by how much memory is configured. Also, locking too much can cause intolerable delays to processes that do not have their text and data locked into memory.

Trade-offs between performance of real-time processes and performance of other processes depend on local needs. On some systems, process locking might be required to guarantee the necessary real-time response.

Data Structures:

Process Management

The data structures used for process management include many different functions and many different data types. Examples of process management functions are the following:

Getting Process Information

	GetCurrentProcess
	Gets information about the current process, if any.

	GetFrontProcess
	Gets the process serial number of the front process.

	GetNextProcess
	Gets information about the next process, if any, in the Process Manager’s internal list of open processes.

	GetProcessInformation
	Get information about a specific process.

	SameProcess
	Determines whether two process serial numbers specify the same process.

	SetFrontProcess
	Sets the front process.

	WakeUpProcess
	Makes a process suspended by WaitNextEvent eligible to receive CPU time.

Launching Applications and Desk Accessories

	LaunchApplication
	Launches an application.

	LaunchDeskAccessory
	Launches desk accessories. Use this function only when your application needs to launch a desk accessory for some reason other than the user’s choosing one from the Apple menu.

Terminating Processes

	ExitToShell
	Terminates your application directly.

ETC.

The functionality of these functions is straightforward and allows the operating system to manage the current and queued processes well. The data types used for in process management include application parameters and pointers as well as process information data types. Resource size is also accounted for in these data types.

Memory Management

Some examples of the memory management functions include:

Accessing Heap Zones

	ApplicationZone
	Returns a pointer to the original application heap zone.

	GetZone
	Returns a pointer to the current heap zone.

	HandleZone
	Returns a pointer to the heap zone containing a specified handle.

	PtrZone
	Returns a pointer to the heap zone containing a specified pointer.

	SetZone
	Changes the current heap zone.

	SystemZone
	Returns a pointer to the system heap zone.

Allocating Temporary Memory

	TempFreeMem
	Returns the total amount of memory available for temporary allocation.

	TempMaxMem
	Compacts the current heap zone and returns the size of the largest contiguous block available for temporary allocation.

	TempNewHandle
	Allocates a new relocatable block of temporary memory.

Allocating and Releasing Nonrelocatable Blocks of Memory

	DisposePtr
	Releases memory occupied by a nonrelocatable block.

	NewPtr
	Allocates a nonrelocatable block of memory of a specified size.

	NewPtrClear
	Allocates a nonrelocatable block of memory of a specified size with all its bytes set to 0.

	NewPtrSys
	Allocates a nonrelocatable block of memory of a specified size in the system heap.

	NewPtrSysClear
	Allocates a nonrelocatable block of a specified size in the system heap with all its bytes set to 0.

ETC.

File Management

File management has many more functions than memory management and process management because of the many different types of storage and directory information. Some examples of these functions are:

Accessing Information About Files and Directories on HFS Volumes

	FSGetCatalogInfo
	Returns catalog information about a file or directory. You can use this function to map an FSRef to an FSSpec.

	FSSetCatalogInfo
	Sets catalog information about a file or directory.

	FSpGetFInfo
	Obtains the Finder information for a file.

	FSpSetFInfo
	Sets the Finder information about a file.

	HGetFInfo
	Obtains the Finder information for a file.

	HSetFInfo
	Sets the Finder information for a file.

Allocating Storage for Forks on HFS Plus Volumes

	FSAllocateFork
	Allocates space on a volume to an open fork.

	PBAllocateForkAsync
	Allocates space on a volume to an open fork.

	PBAllocateForkSync
	Allocates space on a volume to an open fork.

Comparing File System References

	FSCompareFSRefs
	Determines whether two FSRef structures refer to the same file or directory.

	PBCompareFSRefsAsync
	Determines whether two FSRef structures refer to the same file or directory.

	PBCompareFSRefsSync
	Determines whether two FSRef structures refer to the same file or directory.

Controlling Directory Access

	PBHGetDirAccessAsync
	Returns the access control information for a directory.

	PBHGetDirAccessSync
	Returns the access control information for a directory.

	PBHSetDirAccessAsync
	Changes the access control information for a directory.

	PBHSetDirAccessSync
	Changes the access control information for a directory.

ETC
Threads:

Mac OS X uses multiple-threads per process. However, Apple refers to a “process” as a task. A task is a collection of system resources, and can contain many threads. A task has no life of its own, but simply exists to contain threads and provide resources through inheritance. A thread is a point of control in a task, has access to all the elements of the parent task, potentially executes in parallel with other threads in that task, and has a minimal state for low overhead. Typically all that is needed for state memory storage during swapping is equal to register space. OS X makes use of priority based scheduling, preemption, and processor resource allocation based on timesharing, round robin, and FIFO fixed priority policies. It contains highly parallel execution, including preemptively scheduled threads and support for SMP.

High priority real-time threads are usually fixed priority, because they execute for a certain quantum, and then are put at the end of the queue of threads of equal priority. Timesharing threads are also employed. A timesharing thread’s priority is raised and lowered to balance its resource consumption against other timesharing threads.

Tasks are expensive entities, and cannot share resources with another task without an explicit action. All the threads in a task share everything. A thread is an inexpensive as the task bears the weight of resource management. On a multi-processor computer it is possible for multiple threads to execute at once. Even is parallel processing isn’t a goal, it has the advantage that each thread can use a synchronous programming style, instead of attempting asynchronous programming with a single thread attempting to provide multiple services. This increased modularity increases in ease of understanding, and information hiding that is critical to system stability.

Threads belong to one task that defined its virtual address space. To affect the structure of its address space, a thread must send requests to the kernel, called a trap, which causes the kernel to perform the operations on behalf of the thread. Traps usually manipulate resources associated with the task containing the thread. Requests to the kernel can include create, delete and state change.

Mutual Exclusion and Synchronization:

Mutual exclusion and synchronization are obtained through use of ports. Most system resources are accessed through a level of indirection known as a port. On an abstract level, a port is an endpoint of unidirectional communication between a client who requests a service and the server that provides the service. A reply from the server, such as a service request, requires a second port. Most resources are referred to in an object-oriented fashion.

Objects can have multiple ports, such as name and control ports. The control port is sometimes called the privileged port, and allows the object to be manipulated. Access to the name port simply names the object.

Message queues – A message may consist of pure data, copies of memory ranges, port rights, kernel and implicit attributes, such as the sender s security token. Only one task can hold the receive right for a port denoting a message queue. This task receives messages from the port queue. Multiple tasks can hold rights to the port and allow them to send messages into the queue. Tasks communicate by passing data structures containing data elements and performing message-send operations on ports for which they hold sending rights. The task with receive rights then performs a message-receive operation. Multiple threads may attempt to receive messages from a given port, but only one thread will receive any given message.

Semaphores - Semaphore IPC objects support wait , post , and post all operations, but contain no data. These are counting semaphores, in that posts are counted if there are no current waiting threads. All awaiting threads can be awakened by post all.

Notifications - support the post and wait methods, but with the addition of a state field. Each post overwrites the previous state. The state field has a fixed format and is defined when the notification object is instantiated.

Locksets - During the transaction, the thread holds the lock. When it returns from the transaction, the lock is released. There is no data associated with the lock.

Remote procedure calls (RPC) – RPCs are designed to facilitate and optimize remote procedure calls. Their primary interfaces are transaction oriented, and when one is created, a set of argument block formats is defined. A client makes an RPC call, which causes a message to be created and queued on the object, then eventually passed to the server. When the server returns from the transaction the reply is returned to the sender (client). Mach optimizes the transaction by executing the server using the client’s resources, called thread migration.

Scheduling:

The Mac operating system, prior to OSX, used Cooperative Multitasking to handle scheduling of processes. Cooperative Multitasking is highly dependent on the processes to hand over control when the process is finished using the processor. By having the processes be cooperative, the processing goes smoothly, however, if a process is not designed right, it can cause a problem, because the operating system will not intervene to make the process give up control of the processor.

In Mac OSX, preemptive multitasking with dynamic priority adjustment to provide smooth and fair sharing of the computer between applications and users is ensured, even under the heaviest of loads. OSX is based off of the Unix operating system, but had it slightly customized to fit the needs of Mac, which is called Darwin. Darwin assigns priorities to incoming processes so the processes that have a higher priority are handled first, and then the less critical processes are handled. Every time a new process is spawned, Darwin re-inspects the queue of ready processes, and sorts them putting the higher priority at the top.

The micro kernel of the operating system, called Mach, swaps processes out of the processor. When a process is waiting for information to be either written to or read from the disk, Mach will swap out that process, because it will take the disk long to read or write than it will for another process to begin running. Preemption is handled in three ways in Mac OS X: time-sharing, round robin, and through first in first out (FIFO) fixed priority.

File Management:

Mac OS X supports several different file systems including Mac OS Extended Format, BSD standard file system format, the industry standard for networking file systems (NFS), and ISO 9660. In addition to supporting Mac OS extended format, OS X also can read Mac OS Standard format, however is not able to boot from it. NFS is an industry standard for systems that have networking capabilities, and connects to network drives as if they were local drives. ISO 9660 is used for the CD-ROM.

In addition to having support for these file systems come with Mac OS X, third party file systems can be mounted through a virtual file system (VFS). VFS stacks allow users to layer new capabilities onto an existing file system. VFS stacks also provide a filter between the file system and the user, which can perform operations on files as they are read, written to or opened such as virus checking, compression, and encryption. VFS stacks can perform virus-checking functions before the information is read from a file, compress and decompress files on the fly, as well as encrypt a file when closing a file and decrypt it after the correct password is imputed when it is opened. VFS also allows developers to mount other non-Mac file systems, such as the Windows NT File System (NTFS), and even gives developers the option of writing their own kernel extensions.

Conclusion:

Apple Macintosh provides a stable product with much to be sought after in an operating system: open architecture, forward thinking and modularity. However, as long as Microsoft maintains a monopoly on the computer software industry and computer users do not see the advantages of using better software, Macintosh will remain in the shadows and not emerge as a commercial success. Also, the relative reliability and speed of Macintosh systems are reflected in their cost, while their less expensive PC counterparts are more readily manufactured for less. For a desktop user, the choice comes down to price vs. quality. For a network administrator, a thorough analysis of requirements is needed in order to determine whether this system is right for their use. The consumer should be educated and understand his or her options, choosing appropriately to fit the needs of his or her specific situation.

Sleep

Running

Assign CPU

Preempt

Sleeping in memory

Wakeup

Runnable in Memory

Swap In

Swap Out

Swap Out

Wakeup

Sleeping Swapped

Runnable Swapped

