PAGE
10

Table of Contents

Introduction…………………………………………………………………..
Page 1

Data Structures……………………………………………………………….
Page 3

File Management……………………………………………………………..
Page 5

Memory Management………………………………………………………...
Page 6

Process States…………………………………………………………………
Page 7

Deadlock……………………………………………………………………...
Page 7

Processor Modes……………………………………………………………...
Page 8

Uniprocessor or Multiprocessor……………………………………………….Page 9

SMP or Master/Slave.………………………………………………………….Page 9

Threads…………………………………………………………………………Page 9

Scheduling……………………………………………………………………...Page 10

Introduction

Linux is a 32-bit, multi-platform, open source operating system. 32-bit means Linux executes instructions whose word length is 32-bits long. Multi-platform means Linux operates on a variety of different computer architectures. These architectures include Intel x86, Sparc, Alpha and Power PC. On the Alpha architecture Linux actually operates with a word length of 64-bits due to the inability of the Alpha processor to execute 32-bit instructions.

Linux can and should be considered a full implementation of UNIX; Linux is compatible with most software that is written for the UNIX environment. It cannot be called UNIX because the word UNIX is a trademark that is owned by AT&T. Due to the fact UNIX existed before Linux, Linux did not advance the state of the art.

Open source means the source code to Linux is openly available to the general public: meaning that Linux is free. Linux can even be bundled with other software and sold for a profit: this bundle is called a distribution. Different distributions of Linux include Red Hat, Debian, SuSe, Caldera, Mandrake and Slackware. Due to the profit these companies have made, Linux has been economically successful. Even though it was not developed by a commercial organization, Linux has also been commercially successful. This success is due to its popularity; every email sent has a 50% chance of being handled by a Linux sendmail server. Linux is the first full-blown operating system to be open source, in addition Linux is highly reliable and has been known to operate for up to 5 years without rebooting the computer. For these reasons Linux is a technical success. Although there is no customer support for Linux, Usenet groups are an extremely valuable source of information about Linux. There is no customer support because the companies that sell distributions of Linux did not actually write all of the programs included in their distribution. Open source also means if any problems are found, they are updated and redistributed much faster than any other commercial operating system. Open source and the lack of customer support do not mean Linux is any less reliable than other commercial operating systems.

Usenet groups are how Linus Torvalds, the inventor on Linux, originally introduced his project named Linux to the world. Usenet groups also give interested people a place to view and possibly contribute to the project. Linux was invented to take advantage of the new instructions Intel added to it x86 architecture when it introduced the then state of the art 386 microprocessor. Other operating systems only used the instructions supported by the 286 microprocessor; therefore they could not take full advantage of the speed of the new processor. Linux has evolved since then to become a primarily network operating system like UNIX.

Linux is highly scalable and is equally at home on a server or on a workstation. RPM, which stands for Red Hat Package Management, has made it even easier for the user to customize Linux and install only the packages that meet the user’s specific needs. X-windows has made Linux a graphical operating system. The addition of a Graphical User Interface has allowed people who do not posses intricate detailed knowledge of the operating system to be able to operate and be productive with Linux. X-windows is highly customizable due to its two level design. The X-windows server has the ability to execute one X-windows program at a time and does not have the ability to display multiple windows on the screen. The Linux X-windows manager runs on top of the X-windows server and adds the ability for it to run multiple programs in separate windows. It is even possible to configure X-windows to look and act like Microsoft Windows 95, although, the similarity ends at appearance.

Recently Linux has been gaining popularity because it is free and its growing support by major software developers such as Oracle, Corel, Netscape and game developers such as IdSoftware, who developed Quake and Quake II. Linux has recently seen media attention due to the Microsoft Anti-trust hearings. Microsoft attorneys argued Linux was a viable alternative to Windows; they argued due to the fact Linux is free and Windows costs money, windows is simply the better product: thus people choose to use it. The judge did not agree with the attorneys. Many hardware developers have also begun releasing Linux driver for their products. This is especially true of devices in which speed and efficiency are critical, such as, 3D video adapters and sound cards. Supporting vendors include 3Dfx, Nvidia and Creative Labs. Dell has also begun selling a computer, which comes pre-configured with Linux installed. This is the first time in history that a major computer company has manufactured a PC that comes with Linux.

It is still very difficult to configure a printer under Linux. This problem is caused by the lack of driver support by printer manufacturers, which forces users to configure their printers using generic drivers. HP sells its own version of UNIX and does not even provide driver support for their own printers. Linux is also still difficult to configure. It is usually easier to reinstall everything in order to upgrade to a newer version than it is to patch in new libraries and recompile the kernel.

Some people say Linux was created correctly due to the fact it is very scalable, customizable and reliable. Other people say Linux was done wrong due to the fact that it is not easy to configure or operate. Ease of use is not a requirement of a powerful system: it would limit a very scalable and customizable system. For this reason, Linux was developed correctly.

Data Structures

Memory management within a Linux system gets a little complicated. The idea behind the way memory management is done is not too terribly complex and is somewhat easy to understand. The basics behind the way that the memory works is that there is a given amount of physical memory that can be used at any time in conjunction with virtual memory, which is memory that is kept on a storage device.

There are many data structures involved in the handling of virtual memory due to its need to be extremely efficient and fast. The main data structure used in handling virtual memory is the Page Table data structure. The way that virtual memory works is that virtual memory addresses have to be translated into physical addresses, this is where the page table comes in. The page table is used to do the actual translation from virtual to physical. The number of page tables is dependent upon the type of processor that is being used, for Alpha processors on a Linux system there is a three level deep page table structure and for x86 processors there is a two level deep page table structure.

Memory addresses are broken up into pieces called pages, which make it easier to manage. The page sizes in Linux systems are four kilobytes for an x86 based machine. Pages apply to both types of memory, physical and virtual. The page table takes the pages that are setup for virtual memory and maps them into physical memory. The slots of the page table contain more then just the mappings, there is also additional information about the page in the slot. Each slot holds data about whether the page is valid or not, this is just a safety check for the virtual memory manager when it goes to take lookup the physical page frame. If the valid flag reads not valid then the operating system takes over and corrects the problem, otherwise the physical page address is taken and the process continues. Access control information is also stored within each of these slots. Information about how the page can be used, for example whether it can be written to or whether it can be executed. Each slot has all this information as well as physical page number for each slot.

The page table is the main data structure behind memory management, but there are others that are just as important. The mem_map data structure is responsible for keeping track of certain aspects of each page. The count area is only used when there are multiple processors on a system and the page is shared between them. When there is one processor it is set to one, otherwise it is greater then one. The age area holds information about how long the page has been in memory, if it has been accessed, etc. It is used primarily to figure out whether the page should be swapped or discarded. The final area, useful for memory management, is map_nr. This area just holds the physical memory address described. Free_area is another useful data structure, which holds information about blocks of pages. It is mainly used for finding and releasing pages within memory. The structure is setup in array and each element of the array has information about a set of pages. For example the first element would have information about sets of one page, and the second element would have information about sets of two pages, then next element would have four pages, and so on. The helps to speed up the locating and allocating of free pages. Each process has a data structure that is responsible for keeping track of relevant information about the virtual memory that the process is using. Information about the beginning and end of the virtual memory block, the permissions on that memory, and the functions available for use for that memory. These are some of the less complicated but just as important data structures.

Memory management data structures are not incredibly complicated, but there are many little parts that have to run together in order to work just right. The advantage to this arrangement is a fast, manageable, stable method of memory management. It also allows for great scalability, for example to expand to a multi-processor system adding only one data structure is necessary, the shmid_ds which is just a list of virtual memory areas. Each index of the list references a different area and the processors access different indexes to process the next piece of data. Even this method of processing is fairly simple just like many of the different parts of the Linux operating system.

Linux process management has a fairly simple goal, have all processors being used at any given time. This means a process should always be on a processor. That goal seems pretty basic and the method to do this is as well pretty basic. Process data structures aren’t quite as involved as those of memory management. There is one main data structure that is responsible for managing processes, task_struct. Each process has its own task_struct data structure. Pointers to each task_struct are kept in an array called a Task vector. The task_struct structure is broken down into areas that contain information about the process it is linked to, first of which is the state of the process. The process can be in a running state of waiting, stopped, running, or zombie (zombie is when the process is still running even though its parent has been killed). Scheduling data such as when the process is going to run is stored within the task_struct as well. In order for the process to be successfully managed it must have identifiers. Each identifier has to be unique so there isn’t any confusion, to accomplish this each process has their own identifier number as well as a user and group identifier number. As one can imagine this collection of identifiers can add up, especially when more involved programs startup many processes. When a process is run there may be a need for additional related processes to run as well. The processes spawned by the parent are called children. An independent process is one without any children. In Linux there is really only one independent process, the first one that is run on the system. Every other process on the system is somehow tied together. Time is another important section of the structure. The time area counts the number of jiffies that the process has used the CPU as well as holds when the process was created. The process context is held within the task_struct as well so that when the process is switched out the information can be stored and then restored later. Along with processor information there is data kept about the memory and file system. Virtual memory mappings are held in part of the array so that the memory can be accessed quickly. Every file descriptor that the process opens is stored as well. This storage is needed so that the system can clean up the files that were used by the process.

The file system data structures are much less involved then memory and process sturcutres. There are two main structures that handle file management, fs_struct and files_struct. Fs_struct is responsible for holding onto the pointers the virtual file system nodes on the system as well as the umask. The umask is the default mode that new files have when they are created. This property is used for file permissions and user access on the system. The files_struct manages the information about the files that the process is using. Every process can open up to 256 files per instance of the data structure. There are realy only 253 that can be opened because there are three descriptors that are automatically opened every time this structure is created. These three descriptors, standard input, standard output, and standard error, are used to deal with the standard operations of the system, input, output, and errors. The file mode is kept within the structure and is called the f_mode. File modes are what kind of access the file allows, for example read or read/write. The file system inodes are handled within this structure as well. There are pointers held in the f_inode section that describe each file. There are certain system functions that can be performed on the files that are opened. These functions are a part of fs_struct as well under the f_ops area. The file system structures are really simple and hold a lot of information. It seems to work fairly efficiently, but it stores a lot of information within it.

File Management

File Management within Linux is one of the more unique aspects to the operating system. Linux has a wide variety of file system support that can be used to access many types of disks. The way that Linux does this is by using a virtual file system that maps to the desired file system. Using this method there can be a translation between just about any file systems made. The virtual file system can be thought of as a layer between the target file system and the actual file system. In addition to being scalable, it is modular as well.

The file system that Linux operates off of is the ext2 system. The way that data is organized on this file system is a lot like many others there are a few other important differences however. The file system tries to maximize CPU usage by the way data is organized. The blocks in the file system are set at fixed sizes, which prevent calculations of block sizes by the CPU. If a chunk of data takes up one byte over whatever the specified block size is, the data will take up an additional block of data (1024 bytes takes up one block of 1024 bytes, 1025 bytes takes up two blocks totaling 2048 bytes). This can lead up to lots of wasted space, but if managed properly it can also be extremely efficient.

Inodes are one of the important aspects to the ext2 file system. Inodes are what makes up the file system within Linux. Inodes hold which blocks will have data, the access rights of the files, the file modification type, and the type of value of the file, all are important pieces of information. Each file within the system has one inode, which is tracked with a unique identifier number. This system is the very basic underlying of the file management system.

Superblocks are another important part of the file system for Linux. Superblocks are blocks on the system that contain specialized data. The superblocks contain data about the size of the system and its shape as well holding vital information about starting blocks and group sizes. These blocks are the first thing mounted when the mount command is issued and hold more information about starting blocks and group sizes. Superblocks can be used to help restore data on a disk or perform other such functions.

The file management system is a really good idea and is implemented in a way that makes it really fast and reliable. The system gets a lot more complicated then I could understand, but in general the concepts are fairly easy. The scalability and power behind the way the system works is really powerful and surprising.

Memory Management

For virtual memory addressing, Linux uses a three level page table structure. This structure has three types of tables, a page directory, a page middle directory, and a page table. Each active process has one page directory in main memory. Each entry in the page directory points to one page in the page middle directory. The page middle directory and the page table can span multiple pages. Each entry in the page middle directory points to one page of the page table. Each page table entry points to one virtual page of the process. When using this three level page structure, a virtual address has 4 fields. The leftmost field is an index of the page directory. The next field is an index into the page middle directory. The third field is an index to the page table, and the fourth field tells us the offset within the selected page of memory.

For page allocation, Linux has a mechanism for dealing with contiguous blocks of pages mapped to contiguous blocks of page frames. A buddy system is used where the kernel keeps a list of contiguous page frame groups of a fixed size. The groups can have 1, 2, 4, 8, 16, or 32 page frames. Groups are split and merged using the buddy algorithm, as pages are allocated and deallocated.

Linux’s page replacement algorithm is a modified version of the simple clock algorithm. In Linux the use bit is replaced with an 8-bit age variable. Every time a page is accessed, the age variable is incremented. Periodically, Linux sweeps the page pool and decrements the age variable for each page. If a page’s age is zero it means that is has not been referred to in a long time and it is the best candidate for replacement. The larger the age the more frequently it has been accessed recently, so Linux uses a form of the least frequently used policy.

The page allocation mechanism used for virtual memory is the foundation for kernel memory allocation. A buddy algorithm is used so that kernel memory can be allocated and deallocated in units of one or more pages. The minimum amount of memory that can be allocated using this system is one page, but the kernel requires small short-term memory chunks in odd sizes. Linux uses a scheme called slab allocation to take care of these chunks. The slab allocator is very complex but basically Linux maintains a set of linked lists for each size of chunk. The chunks may be split and moved in a manner similar to the buddy algorithm and moved between lists accordingly.
Process States in Linux

The Linux operating system has 5 process states: TASK_RUNNING, TASK_ZOMBIE, TASK_STOPPED, TASK_UNINTERRUPTABLE, and TASK_INTERRUPTABLE. The TASK_RUNNING state corresponds to both the running and ready state listed in the textbook. The TASK_ZOMBIE state corresponds to the exit state in Stallings. A process in the TASK_ZOMBIE state has been terminated but still must have its task structure in the process table. Processes that have been halted fall into the TASK_STOPPED category. TASK_STOPPED has no corresponding state in Stallings’ book. It can only be resumed by an action from another process. A process that is being debugged is an example of when TASK_STOPPED would be used. TASK_INTERRUPTABLE would fall into Stallings’ blocked category. In this state the process is waiting for an event like the end of an I/O, a resource to become available, or a signal from another process. Linux also has another blocked state, TASK_UNINTERRUPTABLE. However, this state differs from TASK_INTERRUPTABLE in that the process is waiting directly on hardware conditions, which means that it will not accept any signals from another process.

Deadlock

Since resources are in a limited form there arises the problem of deadlock. Deadlock is where multiple processes are waiting for the same resource that will not become available because another process is holding that resource in a similar state. Stallings states that there are three conditions of policy that must be present for deadlock to be possible, mutual exclusion, hold and wait, no preemption. Mutual exclusion is where only one process can use a resource at a time. Hold and wait is where a process will hold and wait for additional resources it needs and not give up the ones that it currently has. No preemption means that if a process currently has a resource that it cannot be forcibly taken from it. In order to deal with the problem of deadlock Linux can implement three strategies that come in the form of deadlock prevention, deadlock avoidance and deadlock detection. These strategies for deadlock may not all be implement depending on the version of Linux that is used.

Deadlock prevention is a strategy where the operating system tries to prevent the conditions that cause deadlock in either an indirect or direct method. When deadlock prevention is implemented using an indirect method its goal is to prevent one of the three conditions for deadlock. If all of the conditions for deadlock are not met then deadlock cannot occur. The other method of deadlock prevention is the direct method. In this method the goal is to prevent a circular wait.

Using either method of deadlock prevention is a strategy for dealing with deadlock however with each strategy comes advantages and disadvantages. Depending on the method and scheme of deadlock prevention the disadvantages and disadvantages vary. Some disadvantages of using deadlock prevention include delays in process initiation, inefficiency, preempts without much use and more often than necessary. On the other side some of the advantages for using deadlock prevention are it is convenient when applied to resources whose state can be saved and restored easily and it works well with processes that perform a single activity or burst.

The second strategy that Linux uses to handle deadlock is deadlock avoidance. Using this strategy the operating system dynamically makes resource assignments based on the potential of deadlock. So if a process that has not started might lead to deadlock then the process will not be started and if a process makes an incremental resource request that might lead to deadlock then the request is denied. This strategy also requires that Linux must know future process resource requests in order to avoid possible deadlocks.

As with any strategy there are disadvantages and advantages. The disadvantages of using deadlock avoidance are that a process can be block for long periods and the future resource requirements must be known. The advantage for using deadlock avoidance is there is no preemption necessary.

Deadlock detection is another strategy Linux uses to handle deadlock. This method is opposite of deadlock prevention where access to resources is limited. With deadlock detection Linux grants resources to a process if possible and checks for circular waits periodically. The major issue with this algorithm is deciding how often to check for the circular wait. If you check often then you can find deadlocks faster however if you do check more often then the amount of processor time goes up and slows performance.

Like the previous two strategies deadlock detection has its disadvantages and advantages. The disadvantage of using deadlock detection is there are inherent preemptive losses and slower system performance. The advantages for using deadlock detection are there are never any delays in process initiation and it facilitates online handling.

Processor Modes

As in most operating systems Linux has two main processor modes, user and kernel mode. The first mode is the mode where user programs get executed and this is mode will continue to run until a privileged instruction call is made. A privileged instruction is an instruction that cannot be carried out in the current processor mode. Some examples of privileged instructions are process, memory and I/O instructions. In order to execute these privileged instructions the processor needs to switch more privileged mode. This more privileged mode is the kernel mode. In this mode the user program has complete control of the processor and thus for safety reasons the time in this mode is limited to protect the operating system and its tables.

Uniprocessor or Multiprocessor

Linux supports both uniprocessor and multiprocessor environments. In the uniprocessor environment there is one processor that does all the work, which includes any processing needed by the operating system and any other programs, processes, or threads. In a multiple processor environment the Linux can use different scheduling algorithms to distribute the load between the two processors and manage, which processes and threads go to which processor.
SMP OR Master/Slave

Within the multiple processor environment also comes the ability for symmetric multiprocessing. The Linux Resource Exchange states that Linux version 2.2 supports symmetric multiprocessing with up to 16 processors. This means that the operating system can run on any available processor or on multiple processors simultaneously. However Richard Dragan states in an article that the SMP ability of Linux 2.2 did not scale very well beyond two processors. He also says that in the new Linux, kernel 2.4, the scalability of SMP has been improved.

Threads in Linux

Threads are used often in Linux, as well as other operating systems, because they reduce overhead by sharing fundamental parts. Both user-space and kernel-space threads are used in Linux, though newer versions of Linux implement mostly kernel-space threads. With the implementation of kernel-space threads, the operating system can take advantage of Symmetric Multiprocessor Systems and there is less chance of starvation.

POSIX, which is a multithreaded coding standard, is a standard part of all modern versions of Linux. Linux has a library for multi-threaded programming called LinuxThreads, which implements the POSIX standard and runs on any Linux system with kernel 2.0.0 or newer.

The LinuxThreads library provides kernel-level threads. Each kernel-level thread is a separate Linux process that shares its address space with other threads by the clone() call. The scheduling for the threads is handled by the kernel scheduler, just like the scheduling of any process. The LinuxThreads library is suitable for industrial strength applications. For example, AOL’s multithreaded Web server uses LinuxThreads.

Scheduling in Linux

Linux scheduling is based on the time-sharing technique. This means that several processes run concurrently and the CPU time is divided into slices, one slice for each process running. This time-sharing technique relies on timer interrupts, thus making it invisible to the actual process.

Along with time-sharing, Linux also dynamically prioritizes processes. This insures that deserving processes get more of the CPU time. The scheduling algorithm of Linux distinguishes between real-time processes and other processes, giving real-time processes greater priority. Linux, like all Unix kernels, favors I/O-bound processes over CPU-bound ones.

The Linux Scheduler supports (SMP) symmetric multiprocessor architecture. For use in SMP systems, each processor runs the schedule() function. The processors then communicate with each other to boost system performance. For example, if a process was previously run on one processor it will remain on that processor instead of switching to the other processor. This utilizes the processor cache and helps to reduce cache misses.

There are limitations to the Linux scheduler. For one, the scheduling algorithm doesn’t scale well. The dynamic priority of processes is calculated only after all processes use up their allotted CPU time. If the number of processes is large, it takes longer to dynamically change the priority level of each process. Another limitation is with the size of the predefined CPU time slices. They are too large for high-end systems, which are expected to have a large system load. All of these limitations are only a problem with large systems that have many users. On single workstations the Linux scheduler is very efficient. Since Linux was born on an Intel 80386 and gains most of its popularity in the PC world, its scheduler is quite appropriate for the number of tasks that typically execute on such machines.

Bibliography

Bovet, David (2000). Understanding the Linux Kernel. Sebastopol, CA: O’Reilly & Associates.

Kristian Elof Sorensen (2000). “Linux Resource Exchange.” URL: http://www.linuxrx.com/WS_Linux/WS_Linux_4.perl?os_linuxtwotwo=true&os_macos=true&area_osnet=true&area_hardware=true&area_conv=true&area_os=true&area_info=true
Leroy, Xavier (2000). “The LinuxThreads library.” URL:

http://pauillac.inria.fr/~xleroy/linuxthreads/
Rusling, David (1999) “The Linux Kernel” URL: http://www.linuxdoc.org/LDP/tlk/
Dragan, Richard (2001). “Linux Reborn: Kernel 2.4.” URL:

http://msn.zdnet.com/msn/zdnet/story/0%2C12461%2C2697960-hud00025swoslx%2C00.html
Stallings, William (2001). Operating Systems: internals and design principles. Upper Saddle River, New Jersey: Prentice-Hall Inc. ISBN 0-13-031999-6.

Walton, Sean (1997). “Linux Threads Frequently Asked Questions (FAQ)” URL:

http://www.ibiblio.org/pub/Linux/docs/faqs/Threads-FAQ/html/
