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Introduction
Between 1972 and 1974 NIST issued the first public request for an encryption standard. As a result DES became the accepted encryption standard. Although this algorithm was very popular, it has always been surrounded by controversy as many cryptographers objected to the “closed-door” design of the algorithm. There was also a suspicion that NSA planted a “back-door” in the algorithm, as NSA modified it before it was standardized, although none was able to prove this until now. 
Furthermore the key length of DES became to small for acceptable commercial security, so as a interim solution Triple-DES was used for a while because it provided increased security.
Responding to the desire to replace DES with stronger and more reliable algorithm, NIST announced another public request for an encryption standard, called Advanced Encryption Standard(AES), in 1997.

Twofish is one of the candidates that made it to the final round of the AES program. 

1. Twofish Design
Twofish is a 128-bit symmetric block cipher and can accept a variable-length key up to 256 bits. The cipher is based on a Feistel network, has 16 rounds, a bijective F function made up of four key-dependent 8-by-8-bit S-boxes, a fixed 4-by-4 maximum distance separable matrix over GF(28), a pseudo-Hadamard transform, bitwise rotations, and a well designed key schedule. 
The algorithm can be optimized for use with regard to the hardware platform:

· An optimized implementation of Twofish can encrypt on a Pentium Pro at 16.1 clock cycles per byte

· An 8-bit smart card implementation encrypts at 1660 clock cycles per byte. 
The algorithm can also be implemented in hardware using 14000 gates. The round function and the key schedule were designed to permit a wide variety of tradeoffs between key setup time, gate count, speed, software size and memory.
The algorithm has been extensively cryptanalyzed to prove that it is secure and resistant to known attacks. The designers have managed to mount an attack on 6 rounds with 241 chosen plaintexts and 2232 effort. 
[image: image5.jpg]Twofish - Performance vs. Other Block Ciphers (on a Pentium)

algorithm | Key Length | width (bits) | Rounds | Cycles | Clocks/Byte
| Twofish  variable 126 8 18.1 |
Blowfish  variable 64 8 198
Square 126 126 8 8 203
RC5-32/16  variable 64 a2 16 248
casT-128 128 64 s 8 205
DES s6 64 8 4
Serpent 128,192,256 128 -t
SAFER (S)K-128 128 64 8 8 s2
FEAL-32 64,128 64 S 65
DEA 126 64 8 g 74

Triple-DES 112 64 48 24 116




(Bruce Schneier, http://www.schneier.com/twofish-performance.html)
[image: image6.jpg]Twofish - Performance on Smart Cards

Results for Twofish on 3 6805 CPU, with several different space-time tradeoff options:
RAM, ROM, or EEPROM for Key | Working RAM | Code and Table Size | Clocks per Block | Time per Block @ 4MHz

24 6 2200 26500 6.6 mse
24 36 2150 32000 8.2mses
24 36 2000 35000 8.7 mses
24 36 1750 37100 9.3 mses
184 36 1900 15300 3.8 mses
184 36 1700 18100 45 mses
184 36 1450 19200 48 mses
1208 36 1300 12700 32mses
1208 36 1100 15500 3.8 mses
1208 36 850 16600 42mses

3256 a6 1000 11900 3.0 msec




(Bruce Schneier, http://www.schneier.com/twofish-smart-cards.html) 

Twofish was designed by Bruce Schneier, John Kelsey, Doug Whiting,  David Wagner, Chris Hall, Niels Ferguson. They tried to implement in their design the following principles:

· Simplicity – all the design elements of the algorithm have a clear reason or function

· Performance – they compared all the different option on the basis of relative performance

· Conservativeness -  they left a margin for error and they provided more security than required while trying to design against attacks that are not yet known
1.1 Simplicity

The designers wanted to have the round function simple enough to be kept in their heads. Also experience shows that complicated round functions are harder to analyze and rely on for security than simpler ones.

The simplicity goal was achieved by:

· Reusing Primitives – They reused the same primitives(8-by-8-bit key-dependent S-boxes, subkey XORs) in multiple parts of the cipher. The differences were in the key material used in each case.
· Reversibility – Twofish encryption and decryption round functions are slightly different, but they are built from the same blocks, so it is easy to build hardware or software modules that perform encryption and decryption without duplicating much functionality.
1.2 Performance
The cipher was designed so that it can be evaluated on basis of performance. In the past the cipher designs used to compete on the number of rounds in the cipher. 

The designers of Twofish considered that these kinds of metrics are not good measures of performance. Instead they used the speed of the cipher(cycles per byte encrypted) as a performance indicator. Because the NIST’s AES contest platform of choice was the Intel Pentium Pro, the authors concentrated on that platform, but they also included other 32-bit CPUs as well as 8-bit and 16-bit CPUs. 
1.2.1 Performance Tradeoffs

Twofish’s round function encrypts at 20 clock cycles, so the 16 rounds lead to 320 clock cycles per block encrypted. Any change to the round function was evaluated in terms of increasing or decreasing the number of rounds, so that performance would be kept constant:
· If they had added a data-depended rotation to the output of the two matrices in each round, this would have added 10 clock cycles to the round function on a Pentium and two clock cycles on a Pentium Pro; so in order to keep the performance constant they would have to decrease the number of rounds to 11 from 16

· If they had removed the one-bit rotation, this would have saved the equivalent of one Twofish round

· If they had defined the key-dependent S-boxes using the whole key instead of half of it this would have meant that key setup time would have doubled on high-end machines and the encryption speed on memory-poor implementations (where S-boxes can not be precomputed) would have halved, which would have lead to the reduction of round to 8 to afford this.

In all this cases the question is if the modified number of round for this improved cipher would be better or more secure than the previous design. As it can be easily observed from this examples the analysis is dependent on the microprocessor architecture the algorithm is compared on. Although the authors designed this algorithm for the NIST AES program which had as the default microprocessor architecture the Intel Pentium they tried to keep in mind the 8-bit smart card and hardware implementations. The final design that was submitted reflects the choices and the tradeoffs they had to make in order to design a highly performant algorithm which would be compatible with different hardware platforms and smart card implementations. 
[image: image1.jpg]Twofish - Hardware Tradeoffs
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 (Bruce Schneier, http://www.schneier.com/twofish-hardware.html) 

1.3 Conservativeness
During the decade before Twofish cipher was designed there has been an extensive interest and effort in designing ciphers that would be resistant to known attacks. Many of them have a designed based on theory, and many of them have been broken using newer cryptanalysis techniques.
The Twofish design team tried to make this cipher resistant against both known and unknown attacks. Even if designing it to be resistant against attacks that are not known is impossible, overengineering and conservative design gave them enough confidence in the security of Twofish.

The design elements of the cipher reflect this:

· Twofish uses the Feistel network, which is probably the most studied block-cipher structure, instead of something newer like an unbalanced Feistel network or a generalized Feistel network
· Twofish does not use multiplication mod 216 + 1 or data-dependent rotations for non-linearity

· Twofish uses some newer structures like MDS matrices and PHTs, but only for diffusion

· The key-dependent S-boxes are used because they offer protection against known statistical attacks

· The 16 rounds of the cipher are far more than their analysis was able to brake

· Twofish has a strong key schedule design to prevent related-key and weak-key attacks

· The one-bit rotations prevent the attack based on the byte structure

2. Twofish Design Goals
Twofish was designed to meet NIST's general design criteria for AES [NIST97b], which are:
· Key lengths: 128 bits, 192 bits, and 256 bits.
· A 128-bit symmetric block cipher.
· Efficiency, both on the Intel Pentium Pro and other software and hardware platforms.

· No weak keys.

· Flexible design: 

· accept additional key lengths 
· suitable for a stream cipher, hash function, and MAC.
· implementable on a wide variety of platforms and applications 

· Simple design: ease of analysis and ease of implementation.
To increase the capabilities and the security of the Twofish algorithm the designers have also imposed the following performance criteria on their design:

· Accept any key length up to 256 bits
· Encrypt data in less than 500 clock cycles per block on an Intel Pentium, Pentium Pro, and Pentium II, for a fully optimized version of the algorithm.

· Be capable of setting up a 128-bit key in less than the time required to encrypt 32 blocks on a Pentium, Pentium Pro, and Pentium II.

· Encrypt data in less than 5000 clock cycles per block on a Pentium, Pentium Pro, and Pentium II with no key setup time.

· Not contain any operations that make it inefficient on other 32-bit microprocessors. 

· Not contain any operations that make it inefficient on 8-bit and 16-bit microprocessors.

· Not contain any operations that reduce its efficiency on proposed 64-bit microprocessors; e.g., Merced.

· Not include any elements that make it inefficient in hardware.

· Have a variety of performance tradeoffs with respect to the key schedule.

· Encrypt data in less than 10 milliseconds on a commodity 8-bit microprocessor.

· Be implementable on a 8-bit microprocessor with only 64 bytes of RAM.

· Be implementable in hardware using less than 20,000 gates.

(Bruce Schneier, John Kelsey, Doug Whiting,  David Wagner, Chris Hall, Niels Ferguson,1998)
3. Twofish Cipher Detailed Presentation
A closer look at the Twofish cipher reveals these design elements:
· The Key-dependent S-boxes

· The MDS Matrix

· Pseudo-Hadamard Transformation 
· Feistel Networks
3.1 The Key-dependent S-boxes
The S-boxes are one of the key design elements of Twofish. These S-boxes have the following characteristics:

· They are different one from another

· Each is defined with two, three, or four bytes of key material

· The four S-boxes output four bytes 

· As they are dependent on half of the key there should be few or no pairs of keys that result in the same S-boxes

· A small change of even 1 bit in the key should lead to extremely different S-boxes
· A few or none keys should cause the S-boxes resulted to be “weak”, which means that they might have high-probability differential or linear characteristics or even an simple algebraic representation

3.2 The MDS Matrix

The MDS Matrix is used as the main diffusion mechanism for the four bytes outputted by the four S-boxes. This is realized by multiplying this output with the MDS Matrix, which has the following properties:
· A change in any input byte is guaranteed to change all four output bytes

· A change in two input bytes is guaranteed to change at least three output bytes

· Preserves the number of bytes changed even after the rotation in the round function

· has fixed coefficients

· For software implementation the multiplication is implemented using four lookup tables each containing 256 32-bit words, so that the coefficients used in the matrix do not affect performance

· Twofish does not use the inverse of this matrix for decryption

· No row of the matrix is a rotation of another row or column of the matrix

· It maximizes the minimum binary Hamming weight of the output differences over all single-byte input differences 

3.3 Pseudo-Hadamard Transformation(PHT)
This operation was chosen to produce a fast and efficient operation on the Pentium CPU family using the LEA(load effective address) opcodes.

To optimize the performance of Twofish a version of the code used for encryption and decryption can be “compiled” for any given key and then insert the round subkeys as constant values in LEA opcodes in the instruction stream.
The alternative to using the PHTs would have been to use eight key dependent S-boxes instead of four and an 8-by-8 MDS matrix instead of a 4-by-4 one. Although this would have been easier to analyze and would have had nicer properties, PHTs have been chosen because the alternative would have been much slower in all implementations of the Twofish and would not be worth it.
Given two inputs, a and b, the 32-bit PHT is defined as:

a’ = a + b mod 232
b’ = a + 2b mod 232
(Bruce Schneier, John Kelsey, Doug Whiting,  David Wagner, Chris Hall, Niels Ferguson,1998)
3.4 Feistel Networks

A Feistel network is a general method of transforming a function into a permutation. The function was discovered by Horst Feistel and originally used in the design of Lucifer. The function was widely known and after its use in the DES. Since then it has been used in many block ciphers developed: FEAL [SM88], GOST [GOST89], Khufu and Khafre [Mer91], LOKI [BPS90, BKPS93], CAST-128 [Ada97a], Blowfish [Sch94], and RC5 [Riv95]. 
A Feistel network is based on the Feistel function(F function) which is a key dependent function that maps and input string into an output string. The F is always non-linear  and can be non-surjective:
[image: image2.png]F {0,132 5 {0, 1} — {0,1}7/?




(Bruce Schneier, John Kelsey, Doug Whiting,  David Wagner, Chris Hall, Niels Ferguson,1998)
where
 n – the  block size of the Feistel Network 
F – is a key dependent function which takes n/2 bits of the block and N bits of a key as input and produces an output of length n/2 bits
For each consecutive round, the “source block", which is the input to F, and the output of F is XORed with the “target block". Then the two blocks swap places for the next round. The purpose of the XOR and swap operations is to use a F function, which can even be a weak encryption algorithm, and iterate it repeatedly to create a strong encryption algorithm. Two rounds in a Feistel network are called a “cycle”. After a cycle every bit of the text block has been modified once. The number of rounds of a Feistel network in an encryption algorithm is usually directly proportional to the strength of the algorithm. More rounds means a stronger encryption algorithm. Twofish is a 16-round Feistel network and uses a bijective F function. 
3.5 Round description:
The basis of the Twofish encryption algorithm is the Feistel structure with 16 rounds and additional whitening of the input and output.

Before the encryption begins the plaintext is prepared to be encrypted by dividing it into four 32-bit words. After that they are whitened by XOR-ing  them with four key words. This is followed by sixteen rounds.
Figure 1 shows an overview of the Twofish encryption algorithm.
· The two words on the left are used as input to the g functions after the rotation by 8 bits of one of them

· The g function consists of four byte-wide key-dependent S-boxes, followed by a linear mixing step based on an MDS matrix 

· The results of the two g functions are combined using a Pseudo-Hadamard Transform (PHT), and two keywords are added
· One of the words on the right is rotated by 1 bit and then both of them are XORed in to the results on the left

· The left and right halves are then swapped for the next round

· After 16 rounds, the swap of the last round is reversed, and the four words are XORed with four more key words to produce the ciphertext
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(Bruce Schneier, John Kelsey, Doug Whiting,  David Wagner, Chris Hall, Niels Ferguson,1998)
4. Cryptanalysis of Twofish

The developers of Twofish have spent over one thousand man-hours cryptanalyzing Twofish. These are the most important findings of their cryptanalysis of Twofish:
· A successful chosen-key attack against Twofish requires choosing 160 bits of a pair of keys, and needs 234 work, 232 chosen-plaintext queries, and 212 adaptive chosen-plaintext queries so that 10 rounds Twofish can be broken.
· The meet-in-the-middle attack on standard Twofish requires 4 rounds, 256 known plaintexts, 2225 memory and 2232 work.

· The successful differential attack on standard Twofish can break 5 rounds with 2232 work and 241 chosen-plaintext queries

· There is also a successful meet-in-the-middle attack on 11 rounds Twofish with fixed S-boxes, no 1-bit rotations and no whitening which requires 2225 memory, 256 known plaintexts and 2232 work. The differential attack on this nine rounds Twofish needs 241 memory, 241 chosen plaintexts and 2254 work
· The related-key attack against 10-round Twofish without whitening needs 2155 related-key queries, 2187 work, and for every one of the 2155 keys it requires 212 adaptive chosen plaintexts and chosen 232 plaintexts.
Based on these results we can say that the most efficient attack against Twofish is the brute force attack as for 128-bit key it needs 2128 complexity, for 192-bit key it requires 2192 complexity and for 256-bit key the complexity is 2256.
5. Performance of Twofish
Twofish has been designed to be efficient and compatible with a wide variety of platforms like:  

· 32-bit CPUs 
· 8-bit smart cards
· dedicated VLSI hardware
Maybe one of the algorithm’s most interesting features, which enables different implementations to improve the relative performance of the algorithm, is that it allows several levels of performance tradeoffs on: 

· encryption speed

· key setup 

· hardware gate count

· memory use

· other implementation parameters

All options can also be combined, and these tradeoffs don’t affect the mathematics of Twofish. Here are the main key lengths and options that can be set for Twofish and their influence on the performance of the algorithm:
[image: image4.png]Processor Language | Keying Code Clocks to Key Clocks to Encrypt

Option Size | 128-bit | 192-bit | 256-bit | 128-bit | 192-bit | 256-bit
Pro/II | Assembly | Compiled | 8900 | 12700 5400 | 18100 285 285 285
Pro/ Assembly | Full 8450 7800 0700 3500 315 315 315
Pro/ Assembly | Partial 0700 4900 7600 0500 460 460 460
Pro/II | Assembly | Minimal | 13600 | 2400 5300 | 8200 720 720 720
Pro/ Assembly | Zero 9100 1250 1600 2000 860 1130 1420
Pro/ MS C Full 1200 8000 1200 5700 600 600 600
Pro/ MS C Partial 3200 7100 9700 4100 800 800 800
Pro/ MS C Tinimal 6600 3000 7800 2200 1130 1130 1130
Pro/ MS C Zero 0500 2450 3200 4000 1310 1750 2200
Pentium Pro/11 | Borland C | Full 4100 | 10300 3600 640 640 640
itium Pro/Il | Borland C | Partial 4300 9500 1200 840 840 840
entium Pro/Il | Borland C | Minimal 7300 4600 0300 1160 1160 1160
Pro/ Borland C | Zero 0100 3200 4200 1910 37 3470
Assembly | Compiled | 8900 | 24600 | 26800 | 28800 290 290
Assembly | Full 8200 300 4100 6000 315 315
Assembly | Partia 0300 5500 7800 9800 430 430
Assembly linima 2600 3700 5900 7900 740 740
Assembly | Zero 8700 800 2100 2600 000 600
MS C Full 1800 900 5100 630 630 630
MS C Partia 4100 9200 3400 900 900 900
MS C linima 7800 3800 1100 460 460 460
Pentium MS C Zero 1300 2800 3900 4900 740 2260 2760
Pentium Borland C | Full 2700 4200 8100 | 26100 870 870 870
Borland C | Partia 4200 200 6500 | 24100 100 100
Borland C | Minima 7500 4700 2100 9200 860 860

Pentium Borland C | Zero 1800 3700 4900 6100 2150 327
NtraSPARC C Full 6600 | 21600 | 24900 750 750
NtraSPARC C Partia 8300 3300 900 930 930
IltraSPARC C linima 3300 1600 6600 200 200
NtraSPARC C Zero 1700 3300 5000 450 680 870
PowerPC 750 C Full 2200 7100 | 22200 590 590 590
Vi 750 C Partia 7800 2200 7300 780 780 780
750 C linima 2900 9100 4200 280 280 280
750 C Zero 2500 3600 4900 030 580 2040
68040 C Full 16700 | 53000 | 63500 | 96700 3500 3500 3500
68040 C Partia 18100 | 36700 | 47500 | 78500 4900 4900 4900
68040 C linima 23300 | 11000 | 40000 | 71800 8150 8150 8150
68040 C Zero 16200 9800 3300 | 17000 6300 8600 | 10400

Table 1: Twofish performance with different key lengths and o

ptions





(Bruce Schneier, John Kelsey, Doug Whiting,  David Wagner, Chris Hall, Niels Ferguson,1998)
Conclusion

Twofish is one of the algorithms which made it to the final 5 algorithms selected by NIST to become the AES standard. Although it was not selected as the best algorithm in this final, it is nevertheless one of the most advanced and secure symmetric block ciphers in use today, and can be always considered as a very good alternative to AES.
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