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Introduction:
Twofish is a block cipher by Counterpane Labs. It was one of the five Advanced Encryption Standard (AES) finalists. Twofish is unpatented, and the source code is uncopyrighted and license-free; it is free for all uses.

1. General Description:

Twofish is a 128-bit block cipher that accepts a variable-length key up to 256 bits. The cipher is a 16-round Feistel network with a bijective F function made up of four key-dependent 8-by-8-bit S-boxes, a fixed 4-by-4 maximum distance separable matrix over GF(28), a pseudo-Hadamard transform, bitwise rotations, and a carefully designed key schedule. A fully optimized implementation of Twofish encrypts on a Pentium Pro at 17.8 clock cycles per byte, and an 8-bit smart card implementation encrypts at 1660 clock cycles per byte. Twofish can be implemented in hardware in 14000 gates. The design of both the round function and the key schedule permits a wide variety of tradeoffs between speed, software size, key setup time, gate count, and memory. We have extensively cryptanalyzed Twofish; our best attack breaks 5 rounds with 222.5 chosen plaintexts and 251 effort.
· 128-bit block 

· 128-, 192-, or 256-bit key 

· 16 rounds 

· Works in all standard modes 

· Encrypts data in: 

· 18 clocks/byte on a Pentium
· 16.1 clocks/byte on a Pentium Pro

[image: image10.jpg]Twofish - Performance vs. Other Block Ciphers (on a Pentium)

algorithm | Key Length | width (bits) | Rounds | Cycles | Clocks/Byte
| Twofish  variable 126 8 18.1 |
Blowfish  variable 64 8 198
Square 126 126 8 8 203
RC5-32/16  variable 64 a2 16 248
casT-128 128 64 s 8 205
DES s6 64 8 4
Serpent 128,192,256 128 -t
SAFER (S)K-128 128 64 8 8 s2
FEAL-32 64,128 64 S 65
DEA 126 64 8 g 74

Triple-DES 112 64 48 24 116




[image: image11.jpg]Twofish - Performance on Smart Cards

Results for Twofish on 3 6805 CPU, with several different space-time tradeoff options:
RAM, ROM, or EEPROM for Key | Working RAM | Code and Table Size | Clocks per Block | Time per Block @ 4MHz

24 6 2200 26500 6.6 mse
24 36 2150 32000 8.2mses
24 36 2000 35000 8.7 mses
24 36 1750 37100 9.3 mses
184 36 1900 15300 3.8 mses
184 36 1700 18100 45 mses
184 36 1450 19200 48 mses
1208 36 1300 12700 32mses
1208 36 1100 15500 3.8 mses
1208 36 850 16600 42mses

3256 a6 1000 11900 3.0 msec
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· Extensively cryptanalyzed 

· Unpatented 

· Uncopyrighted 

· Free 

(Bruce Schneier, http://www.schneier.com/twofish-brief.html) 
2. Twofish Design Goals
Twofish was designed to meet NIST's design criteria for AES [NIST97b]. Specifically, they are:
· A 128-bit symmetric block cipher.

· Key lengths of 128 bits, 192 bits, and 256 bits.

· No weak keys.

· Efficiency, both on the Intel Pentium Pro and other software and hardware platforms.

· Flexible design: e.g., accept additional key lengths; be implementable on a wide variety of platforms and applications; and be suitable for a stream cipher, hash function, and MAC.

· Simple design, both to facilitate ease of analysis and ease of implementation.
Additionally, they imposed the following performance criteria on their design:
· Accept any key length up to 256 bits
· Encrypt data in less than 500 clock cycles per block on an Intel Pentium, Pentium Pro, and Pentium II, for a fully optimized version of the algorithm.

· Be capable of setting up a 128-bit key (for optimal encryption speed) in less than the time required to encrypt 32 blocks on a Pentium, Pentium Pro, and Pentium II.

· Encrypt data in less than 5000 clock cycles per block on a Pentium, Pentium Pro, and Pentium II with no key setup time.

· Not contain any operations that make it inefficient on other 32-bit microprocessors. 

· Not contain any operations that make it inefficient on 8-bit and 16-bit microprocessors.

· Not contain any operations that reduce its efficiency on proposed 64-bit microprocessors; e.g., Merced.

· Not include any elements that make it inefficient in hardware.

· Have a variety of performance tradeoffs with respect to the key schedule.

· Encrypt data in less than 10 milliseconds on a commodity 8-bit microprocessor.

· Be implementable on a 8-bit microprocessor with only 64 bytes of RAM.

· Be implementable in hardware using less than 20,000 gates.

3. Twofish Building Blocks
3.1 Feistel Networks

A Feistel network is a general method of transforming any function (usually called the F function) into a permutation. It was invented by Horst Feistel [FNS75] in his design of Lucifer [Fei73], and popularized by DES [NBS77]. It is the basis of most block ciphers published since then, including FEAL [SM88], GOST [GOST89], Khufu and Khafre [Mer91], LOKI [BPS90, BKPS93], CAST-128 [Ada97a], Blowfish [Sch94], and RC5 [Riv95]. The fundamental building block of a Feistel network is the F function: a key-dependent mapping of an input string onto an output string. An F function is always non-linear and possibly non-surjective:
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where n is the block size of the Feistel Network, and F is a function taking n/2 bits of the block and N bits of a key as input, and producing an output of length n/2 bits. In each round, the “source block" is the input to F, and the output of F is XORed with the “target block," after which these two blocks swap places for the next round. The idea here is to take an F function, which may be a weak encryption algorithm when taken by itself, and repeatedly iterate it to create a strong encryption algorithm. Two rounds of a Feistel network is called a “cycle" [SK96]. In one cycle, every bit of the text block has been modified once. Twofish is a 16-round Feistel network with a bijective F function.

3.2 S-boxes
An S-box is a table-driven non-linear substitution operation used in most block ciphers. S-boxes vary in both input size and output size, and can be created either randomly or algorithmically. S-boxes were first used in Lucifer, then DES, and afterwards in most encryption algorithms. Twofish uses four different, bijective, key-dependent, 8-by-8-bit S-boxes. These S-boxes are built using two fixed 8-by-8-bit permutations and key material.
4. Twofish

Figure 1 shows an overview of the Twofish block cipher. Twofish uses a 16-round Feistel-like structure with additional whitening of the input and output. The only non-Feistel elements are the 1-bit rotates. The rotations can be moved into the F function to create a pure Feistel structure, but this requires an additional rotation of the words just before the output whitening step.

The plaintext is split into four 32-bit words. In the input whitening step, these are XORed with four key words. This is followed by sixteen rounds.
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Figure 1: Twofish




In each round, the two words on the left are used as input to the g functions. (One of them is rotated by 8 bits first.) The g function consists of four byte-wide key-dependent S-boxes, followed by a linear mixing step based on an MDS matrix. The results of the two g functions are combined using a Pseudo-Hadamard Transform (PHT), and two keywords are added. These two results are then XORed into the words on the right (one of which is rotated left by 1 bit first, the other is rotated right afterwards). The left and right halves are then swapped for the next round. After all the rounds, the swap of the last round is reversed, and the four words are XORed with four more key words to produce the ciphertext. More formally, the 16 bytes of plaintext p0……… p15 are first split into 4 words P0,…, P3 of 32 bits each using the little-endian convention.
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In the input whitening step, these words are XORed with 4 words of the expanded key.
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In each of the 16 rounds, the first two words are used as input to the function F, which also takes the round number as input. The third word is XORed with the first output of F and then rotated right by one bit. The fourth word is rotated left by one bit and then XORed with the second output word of F. Finally, the two halves are exchanged. Thus,
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for r = 0……… 15 and where ROR and ROL are functions that rotate their first argument (a 32-bit word) left or right by the number of bits indicated by their second argument. The output whitening step undoes the `swap' of the last round, and XORs the data words with 4 words of the expanded key.
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5. Performance of Twofish
Twofish has been designed from the start with performance in mind. It is efficient on a variety of platforms: 32-bit CPUs, 8-bit smart cards, and dedicated VLSI hardware. More importantly, though, Twofish has been designed to allow several layers of performance tradeoffs, depending on the relative importance of encryption speed, key setup, memory use, hardware gate count, and other implementation parameters. The result is a highly flexible algorithm that can be implemented efficiently in a variety of cryptographic applications. All these options are interoperable; these are simply implementation trade-offs and do not affect the mathematics of Twofish. One end of a communication could use the fastest Pentium II implementation, and the other the cheapest hardware implementation.

[image: image8.png]Processor Language | Keying Code Clocks to Key Clocks to Encrypt

Option Size | 128-bit | 192-bit | 256-bit | 128-bit | 192-bit | 256-bit
Pro/II | Assembly | Compiled | 8900 | 12700 5400 | 18100 285 285 285
Pro/ Assembly | Full 8450 7800 0700 3500 315 315 315
Pro/ Assembly | Partial 0700 4900 7600 0500 460 460 460
Pro/II | Assembly | Minimal | 13600 | 2400 5300 | 8200 720 720 720
Pro/ Assembly | Zero 9100 1250 1600 2000 860 1130 1420
Pro/ MS C Full 1200 8000 1200 5700 600 600 600
Pro/ MS C Partial 3200 7100 9700 4100 800 800 800
Pro/ MS C Tinimal 6600 3000 7800 2200 1130 1130 1130
Pro/ MS C Zero 0500 2450 3200 4000 1310 1750 2200
Pentium Pro/11 | Borland C | Full 4100 | 10300 3600 640 640 640
itium Pro/Il | Borland C | Partial 4300 9500 1200 840 840 840
entium Pro/Il | Borland C | Minimal 7300 4600 0300 1160 1160 1160
Pro/ Borland C | Zero 0100 3200 4200 1910 37 3470
Assembly | Compiled | 8900 | 24600 | 26800 | 28800 290 290
Assembly | Full 8200 300 4100 6000 315 315
Assembly | Partia 0300 5500 7800 9800 430 430
Assembly linima 2600 3700 5900 7900 740 740
Assembly | Zero 8700 800 2100 2600 000 600
MS C Full 1800 900 5100 630 630 630
MS C Partia 4100 9200 3400 900 900 900
MS C linima 7800 3800 1100 460 460 460
Pentium MS C Zero 1300 2800 3900 4900 740 2260 2760
Pentium Borland C | Full 2700 4200 8100 | 26100 870 870 870
Borland C | Partia 4200 200 6500 | 24100 100 100
Borland C | Minima 7500 4700 2100 9200 860 860

Pentium Borland C | Zero 1800 3700 4900 6100 2150 327
NtraSPARC C Full 6600 | 21600 | 24900 750 750
NtraSPARC C Partia 8300 3300 900 930 930
IltraSPARC C linima 3300 1600 6600 200 200
NtraSPARC C Zero 1700 3300 5000 450 680 870
PowerPC 750 C Full 2200 7100 | 22200 590 590 590
Vi 750 C Partia 7800 2200 7300 780 780 780
750 C linima 2900 9100 4200 280 280 280
750 C Zero 2500 3600 4900 030 580 2040
68040 C Full 16700 | 53000 | 63500 | 96700 3500 3500 3500
68040 C Partia 18100 | 36700 | 47500 | 78500 4900 4900 4900
68040 C linima 23300 | 11000 | 40000 | 71800 8150 8150 8150
68040 C Zero 16200 9800 3300 | 17000 6300 8600 | 10400

Table 1: Twofish performance with different key lengths and o

ptions





5.1. Performance on Large Microprocessors

Table 1 gives Twofish's performance, encryption or decryption, for different key scheduling options and on several modern microprocessors using different languages and compilers. The times for encryption and decryption are usually extremely close, so only the encryption time is given. There is no time required to set up the algorithm except for key setup. The time required to change a key is the same as the time required to setup a key. The approximate total code size (in bytes) of the routines for encryption, decryption, and key setup is also listed, where available.

All timing data is given in clock cycles per block, or clock cycles to set up the complete key. For example, on a Pentium Pro a fully optimized assembly language version of Twofish can encrypt or decrypt data in 285 clock cycles per block, or 17.8 clock cycles per byte, after a 12700-clock key setup (equivalent to encrypting 45 blocks). On a 200 MHz Pentium Pro microprocessor, this translates to a throughput of just under 90 Mbits/sec. 

We have implemented four different keying options. All of our keying options precompute Ki for i = 0……… 39 and use 160 bytes of RAM to store these constants. The differences occur in the way the function g is implemented. There are several other possible keying options, each with slightly different setup/throughput tradeoffs, but the examples listed below are representative of the range of possibilities.

Full Keying 
This option performs the full key precomputations. Using 4 Kb of table space, each S-box is expanded to a 8-by-32-bit table that combines both the S-box lookup and the multiply by the column of the MDS matrix. Using this option, a computation of g consists of four table lookups, and three XORs. Encryption and decryption speeds are constant regardless of key size.
Partial Keying 
For applications where few blocks are encrypted with a single key, it may not make sense to build the complete key schedule. The partial keying option precomputes the four S-boxes in 8-by-8 bit tables, and uses four fixed 8-by-32-bit MDS tables to perform the MDS multiply. This reduces the key-schedule table space to 1 Kb. For each byte, the last of the q-box lookups is in fact incorporated into the MDS table, so only k of the q-boxes are incorporated into the 8-by-8-bit S-box table that is built by the key schedule. Encryption and decryption speed are again constant regardless of key size. 
Minimal Keying 
For applications where very few blocks are encrypted with a single key, there is a further possible optimization. Compared to partial keying, one less layer of q-boxes is precomputed into the S-box table, and the remaining q-box is done during the encryption. For the 128-bit key this is particularly efficient as precomputing the S-boxes now consists of copying the table of the appropriate q-box and XORing it with a constant (which can be done word-by-word instead of byte-by-byte). This option uses a 1 Kb table to store the partially precomputed S-boxes. The necessary key bytes from S are of course precomputed as they are needed in every round. Zero Keying The zero keying option does not precompute any of the S-boxes, and thus needs no extra tables. Instead, every entry is computed on

5.2. Performance on Future Microprocessors
Given the ever-advancing capabilities of CPUs, it is worthwhile to make some observations about how the Twofish algorithm will run on future processors, including Intel's Merced. Not many details are known about Merced, other than that it includes an Explicitly Parallel Instruction Computing (EPIC) architecture, as well the ability to run existing Pentium code. EPIC is related to VLIW architectures that allow many parallel opcodes to be executed a once, while the Pentium allows only two opcodes in parallel, and the Pentium Pro/Pentium II may process up to three opcodes per clock. However, access to memory tables is limited in most VLIW implementations to only a few parallel operations, and we expect similar restrictions to hold for Merced. For example, an existing Philips VLIW CPU can process up to five opcodes in parallel, but only two of the opcodes can read from memory. 
Since Twofish relies on 8-bit non-linear S-boxes, it is clear that table access is an integral part of the algorithm. Thus, Twofish might not be able to take advantage of all the parallel execution units available on a VLIW processor. However, there is still plenty of parallelism in Twofish that can be well utilized in an optimized VLIW software implementation. Equally important, the alternative of not using large S-boxes, while it may allow greater parallelism, also naturally involves less non-linearity and thus generally requires more rounds. For example, Serpent [BAK98], based on “inline" computation of 4-bit S-boxes, may experience a relatively larger speedup than Twofish on a VLIW CPU, but Serpent also requires 32 rounds, and is considerably slower to start with.
5.3. Hardware Performance
No actual logic design has been implemented for  Twofish, but estimates in terms of gates for each building block have been made. As in software, there are many possible space-time tradeoffs in hardware implementations of Twofish. Thus, it is not meaningful to give just one figure for the speed and size attributes of Twofish in hardware. Instead, we will try to outline several of the options and give estimate for speed and gate count of several different architectures. For example, the round subkeys could be precomputed and stored in a RAM, or they could be computed on the fly. If computed on the fly, the h function logic could be time-multiplexed between subkeys and the round function to save size at a cost in speed, or the logic could be duplicated, adding gates but perhaps running twice as fast. If the subkeys were precomputed, the h function logic would be used during a key setup phase to compute the subkeys, saving gates but adding a startup time roughly equal to one block encryption time. Similarly, a single h function logic block could be time-multiplexed between computing T0 and T1, halving throughput but saving even more gates.

As another example of the possible tradeoffs, the S-boxes could be precomputed and stored in on-chip RAMs, allowing faster operation because there is no need to ripple through several layers of key material XORs and q permutations. The addition of such RAMs (e.g., eight 256-byte RAMs) would perhaps double or triple the size of the logic, and it would also impose a significant startup time on key change to initialize the RAMs. Despite these disadvantages, such an architecture might raise the throughput by a factor of two or more (particularly for the larger key sizes), so for high-performance systems with infrequent re-keying, this option may be attractive
The following table gives hardware size and speed estimates for the case of 128-bit keys. Depending on the architecture, the logic will grow somewhat in size for larger keys, and the clock speed (or startup time) may increase, but it is believed that a 128-bit AES scheme will be acceptable in the market long enough that most vendors will choose to implement that recommended key length. These estimates are all based on existing 0.35 micron CMOS technology. All the examples in the table are actually quite small in today's technology, except the final (highest performance non-pipelined) instance, but even that is very doable today and will become fairly inexpensive as the next generation silicon technology (0.25 micron) becomes the industry norm.

[image: image9.png]Gate h Clocks | Pipeline Clock | Throughput | Startup

count | blocks | per Block | Levels Speed (Mbits/sec) clocks Comments
14000 1 64 1 40 MHz 80 4 Subkeys on the fly
19000 1 32 1 40 MHz 160 40

23000 2 16 1 40 MHz 320 20

26000 2 32 2 80 MHz 640 20

28000 2 48 3 120 MHz 960 20

30000 2 64 4 150 MHz 1200 20

80000 2 16 1 80 MHz 640 300 S-box RAMs





(Bruce Schneier, John Kelsey, Doug Whiting,  David Wagner, Chris Hall, Niels Ferguson,1998)
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