RC6: The Simple Cipher
CS-627-0001: Cryptography

Fall 2004
Morgan Monger

Table of Contents

11
Introduction

12
Description

12.1
Algorithm Details

22.2
Diffusion

22.3
Key Setup

32.4
Encryption and Decryption

42.5
AES Candidacy

53
Simplicity

53.1
Research Appeal

53.2
Performance

63.3
Security

64
AES Security Evaluations

64.1
Theoretical Attacks

64.1.1
Basic Cryptanalytic Attack

64.1.2
Linear and Differential Cryptanalytic Attacks

74.1.3
Other Attacks

74.2
Final AES Report

85
Conclusions

96
Bibliography

1 Introduction

The RC6 algorithm is a block cipher that was one of the finalists in the Advanced Encryption Standard (AES) competition (Rivest et al., 1998a); the AES competition, sponsored by the National Institute of Standards and Technology (NIST), began in 1997 (Nechvatal et al., 2000). The RC6 algorithm evolved from its predecessor RC5, a simple and “parameterized family of encryption algorithms” (Rivest, 1997). Since RC6 is an evolution of RC5, evolutionary differences will be noted accordingly. Also, for consistency in all AES-related documents and RC6 research, whenever RC6 is mentioned without any trailing parameters, the assumed parameters are the AES required parameters, which will be defined later.

The evolution leading to RC6 has provided a simple cipher yielding numerous evaluations and adequate security in a small package. After describing the structure of the algorithm, the prominent goal that stands out is simplicity. Through this simplicity, multiple evaluations have been performed, including AES-related evaluations, which will be discussed at a high level, due to complexity and number of articles. The fact that such a small, simple algorithm contended for AES with such high security requirements is noteworthy.
2 Description

In 1995, RC5 came about from Ronald Rivest, one of the creators of the RSA algorithm (Rivest et al., 1998a). RC5 is a symmetric block cipher that relies heavily on data-dependent rotations (Rivest, 1997). RC5 has been the subject of many studies that have expanded the knowledge of how RC5’s structure contributes to its security (Rivest et al., 1998a). With certain architectural constraints by the AES competition, RC5 did not appear to be the best fit. However, in 1998, RC5’s successor is born: RC6. Improvements over RC5 include using four w-bit word registers, integer multiplication as an additional primitive operation, and introducing a quadratic equation into the transformation (Rivest et al., 1998a).
2.1 Algorithm Details

RC6, like RC5, consists of three components: a key expansion algorithm, an encryption algorithm, and a decryption algorithm. The parameterization is shown in the following specification: RC6-w/r/b, where w is the word size, r is the non-negative number of rounds, and b is the byte size of the encryption key (Rivest et al., 1998a). RC6 makes use of data-dependent rotations, similar to DES rounds (Rivest et al., 1998a). RC6 is based on seven primitive operations as shown in Table 1. Normally, there are only six primitive operations (Rivest et al., 1998a); however, the parallel assignment is primitive and an essential operation to RC6. The addition, subtraction, and multiplication operations use two’s complement representations (Rivest, 1997). Integer multiplication is used to increase diffusion per round and increase the speed of the cipher (Rivest et al., 1998a).
	Operation
	Description

	a + b
	Integer addition modulo 2w

	a – b
	Integer subtraction modulo 2w

	a [image: image1.bmp] b
	Bitwise exclusive-or (XOR) of w-bit words

	a x b
	Integer multiplication modulo 2w

	a <<< b
	Rotate the w-bit word a to the left by the amount given by the least significant (log2 w) bits of b

	a >>> b
	Rotate the w-bit word a to the right by the amount given by the least significant (log2 w) bits of b

	Enc: (A,B,C,D) = (B,C,D,A)
Dec: (A,B,C,D) = (D,A,B,C)
	Parallel assignment of values on the right to registers on the left.

	Table 1: RC6 Operations (Rivest et al., 1998a)

2.2 Diffusion
Diffusion involves propagating bit changes from one block to other blocks. An avalanche effect is where one small change in the plaintext triggers major changes in the ciphertext. To speed up the avalanche of change between rounds, a quadratic equation is introduced (Rivest et al., 1998a). By increasing the rate of diffusion, the rotation amounts spoiling sooner is more likely, due to the changes from simple differentials (Rivest et al., 1998a). To achieve the security goals for transformation, the following quadratic equation is used twice within each round:

f(x) = x(2x + 1)(mod 2w)

The high-order bits of this equation, which depend on all of the bits of x, are used to determine the rotation amount used (Rivest et al., 1998a). In conjunction with the quadratic equation, the (log2 w) bit shift complicates advanced cryptanalytic attacks (Rivest et al., 1998a). Integer multiplication also contributes by making sure that all of the bits of the rotation amounts are dependent on the bits of another register (Rivest et al., 1998a).
2.3 Key Setup

The key expansion algorithm is used to expand the user-supplied key to fill an expanded array S, so S resembles an array of t random binary words (Rivest, 1997). The key schedule algorithm for RC6 differs from the RC5 version where more words are derived from the user-supplied key (Rivest et al., 1998a). The user must supply a key of b bytes, where 0 ≤ b ≤ 255, and from which (2r+4) words are derived and stored in a round key array S (Rivest et al., 1998a). Zero bytes are appended to give the key length equal to a “non-zero integral number” (Rivest et al., 1998a). The key bytes are then loaded in little-endian order into an array L of size c; when b = 0, c = 1 and L[0] = 0 (Rivest et al., 1998a). The (2r+4) derived words are stored in array S for later decryption or encryption (Rivest et al., 1998a). Figure 1 illustrates the key schedule used in both RC5 and RC6. Pw and Qw are “magic constants”, or word-sized binary constants where Odd(x) is the least odd integer greater than or equal to |x| (Rivest, 1997). In Figure 1, the base of natural logarithms and the golden ratio are respectively defined as e = 2.718281828459… and ø = 1.618033988749… (Rivest, 1997).

[image: image2]
2.4 Encryption and Decryption
The processes of encryption and decryption are both composed of three stages: pre-whitening, an inner loop of rounds, and post-whitening. Pre-whitening and post-whitening remove the possibility of the plaintext revealing part of the input to the first round of encryption and the ciphertext revealing part of the input to the last round of encryption (Rivest et al., 1998a).

The block encryption process illustrated in Figure 1 uses operations in Table 1. First, the registers B and D undergo pre-whitening. Next, there are r rounds, which are designated by the “for” loop in Figure 1. The registers B and D are put through the quadratic equation and rotated (log2 w) bits to the left, respectively. The resulting value of B has an exclusive-or (XOR) operation with A, and D with C respectively. This value t is then left-rotated u bits and added to round key S[2i]; the resulting value of D and C is left-rotated t bits and added to round key S[2i + 1]. In the final stage of the round, the register values are permuted, using parallel assignment, to mix the AB computation with the CD computation, increasing cryptanalytic complexity (Rivest et al., 1998a). Finally, registers A and C undergo post-whitening.
Though encryption and decryption are similar in overall structure, the detailed differences bear discussion. For RC6 decryption, the procedure begins with a pre-whitening step for C and A. The loop runs in reverse for the number of r rounds. Within the loop, the first task is parallel assignment. From there, the aforementioned quadratic equation is used on D and B respectively. The resulting value for u, and t respectively, is left-rotated (log2 w) bits. The round key S[2i + 1] is subtracted from register C value, the result of which is right-rotated t bits; round key S[2i] is subtracted from register A value, the result of which is right-rotated u bits. This resulting value involving register C has an exclusive-or operation with u, A with t respectively. After completing the loop, D and B [image: image4.bmp][image: image5.bmp]undergo a post-whitening step.
2.5 AES Candidacy

The AES criteria for candidacy were very specific and, in some cases, architecturally limiting. The requirement for 128-bit block handling pushed RC5 out of competition because of unreliable or inefficient implementations of 64-bit operations in the target architectures and languages (Rivest et al., 1998a). To satisfy the AES requirements for the target architectures and languages, RC6 parameters contained the following values: w = 32, r = 20, and b = [16, 24, 32]; the use of four 32-bit registers satisfies the 128-bit block handling requirement (Rivest et al., 1998a); the choice of 20 rounds comes from a linear cryptanalysis where 16 rounds could be compromised in 2119 plaintexts (Knudsen & Meier, 1999). With the AES values, the bit shift is (log2 32), or 5 bits, and the length of the round key array is ((2 * 20) + 3) + 1), or 44 keys.
Figure 4 is a visual representation of the RC6 encryption process for AES. Figure 5, the data view, shows the values for the AES requirements filled into the variables from Figure 2. Since Figure 5 is just a matter of variable substitution, the companion decryption version of the figure is omitted for brevity.
[image: image6.bmp]
[image: image7.bmp]
3 Simplicity

An important goal of RC6 is simplicity. By keeping the cipher structure simple, it becomes available to a larger group of people for evaluation. The simplistic structure also plays a part in performance and security.
3.1 Research Appeal
When a cipher is simple, it can be analyzed widely by cryptanalysts (Rivest et al., 2000). The simplicity of RC6 has been quite striking for many researchers (Rivest et al., 1998a). This simplicity leaves RC6 open to both rudimentary and complex analysis, which permits many people to evaluate the security of the algorithm (Rivest et al., 1998a). However, prior research exists on RC5, which applies to RC6. With this existing base of knowledge, RC6 appears to come from a quite mature and heavily studied cipher (Rivest et al., 1998a).
3.2 Performance
Achieving many of the goals, while keeping the cipher simple, was the design objective that prevailed throughout RC6 development (Rivest et al., 1998a). Considering the simplicity of this cipher, an estimated assembly language implementation can be obtained for each component (key setup, block encryption, block decryption) in under 256 bytes (Rivest et al., 1998a). Since the algorithm is quite simple, this permits a compiler to produce well-optimized code, resulting in good performance without hand-optimizations (Rivest et al., 2000). When discussing the size of RC6, the actual code length is not the only metric; memory usage is of particular interest. In terms of the Java Runtime Environment, RC6 used the least amount of memory out of all the AES finalists (Rivest et al., 1998a).

3.3 Security

The security of the cipher is augmented by the simple structure. For instance, the rate of diffusion is increased by several simple steps in the round: integer multiplication, the quadratic equation, and fixed bit shifting. The data-dependent rotations are improved, because the rotation amounts are determined from the high-order bits in f(x), which in turn are dependent on the register bits. RC6 security has been evaluated to possess an “adequate security margin” (Nechvatal et al, 2000); this rating is given with knowledge of theoretical attacks, which were devised out of the multiple evaluations. The AES-specific security evaluations provide sufficient breadth and depth to how RC6 security is affected by the simplicity of the cipher.
4 AES Security Evaluations
The security evaluations performed against RC6 result from scrutiny during the AES competition. Though there have been evaluations of RC5, the focus of those evaluations do not negatively affect RC6. There is a variety of detailed security analyses available for RC6 in the AES competition that is very informative. This assortment of materials shows that a great deal of thought and scrutiny has gone into the evolution and assessment of RC6.
4.1 Theoretical Attacks

4.1.1 Basic Cryptanalytic Attack
The recommended approach for cryptanalysis against RC6 is an exhaustive search, or brute-force attack, for the b-byte encryption key; however, when the user-supplied key is long, the search should focus on the expanded round key array (Rivest et al., 1998a). A resource costly meet-in-the-middle attack can reduce the number of operations to min{28b, 2704}, otherwise the number is min{28b, 21408} operations (Rivest et al., 1998a). However, AES-specified key sizes undermine the efforts of a brute-force attack (Rivest et al., 1998b).

4.1.2 Linear and Differential Cryptanalytic Attacks
Two advanced cryptanalytic attacks on block ciphers are differential and linear. Differential cryptanalysis is a chosen plaintext attack on iterative block ciphers, where the inputs to the final round can be predicted with a certain probability (Rivest et al., 1998b). Linear cryptanalysis is also an attack on iterative block ciphers; however, this search is for linear expressions connecting bits of the plaintext to the output of round r (Rivest et al., 1998b). Though these attacks are feasible against small-round versions of RC6, there is no evidence that they can be used against the AES 20-round version (Rivest et al., 1998a). The main difficulty against attacking RC6 is defined as the complexity in finding good iterative characteristics or linear approximations which can be used in an attack (Rivest et al., 1998a). To mount a successful attack, the number of known plaintexts must be less than 2128 (Rivest et al., 1998a). Figure 6 illustrates the use of advanced cryptanalytic attacks and the plaintext requirements; boxes surrounding numbers indicates a number higher than 2128. Differential cryptanalysis appears to be effective up to 12 rounds before exceeding the available data. Linear cryptanalysis shows much more resolve up the 16th round. However, in both cases, the AES 20-round version data requirement surpasses the maximum plaintexts of 2128.

[image: image3]
4.1.3 Other Attacks
According to Baudron et al., a statistical, χ2 (chi-squared), attack can be launched to break up to r rounds, where r is the ceiling of ((2w/log2w) + 3/2). χ2 is used to distinguish random sources from unknown or uniform distributions; the use of a distinguisher to gather information is called a distinguishing attack (Knudsen & Meier, 1999). A statistical attack can be launched against 20-round RC6, but it has a small probability of success, 2-57, and a complexity of 2128 (Baudron et al., 1999).
Knudsen and Meier take the statistical attack further with the addition of key recovery attacks. This attack is faster than a brute force attack for the 128-bit key version of RC6 with up to 12 rounds; however, variations can increase the round effectiveness to the 15th round (Knudsen & Meier, 1999).
4.2 Final AES Report

In the final AES competition report by Nechvatal et al., RC6 is cumulatively evaluated. The first piece of information states that RC6 has no known security attacks, which conforms to earlier findings on theoretical attacks. RC6 is described as having received praise for its simplicity contributing to its security analysis. RC6 is also cited for evolving from a cipher that has been subjected to previous analysis; this seems to coincide with the previous observations regarding evolution to RC6.

When discussing implementations, RC6 has a low ROM (read-only memory) requirement; however, the lack of an on-the-fly round key computation capability causes decryption to require a large amount of RAM (random-access memory). This round key computation deficiency also reduces the level of key agility, the ability to change keys quickly with minimal resources. The increase in required RAM is not surprising, when considering that most of the discussion in the various sources focuses on encryption. Implementation-specific attacks are timing or power attacks that affect vulnerable devices; however, RC6 is not easy to defend without considerable performance degradation. On the other hand, the ROM and RAM requirements for RC6, when masked, are reasonable compared to the other AES finalists. The final RC6 observation describes the limited potential for parallelism for a single block encryption.
5 Conclusions
RC6 cipher appears to be a useful cryptographic solution that has taken advantage of the extensive knowledge base, both from RC5 and the AES evaluations. RC6 is appealing enough for research, which can yield a larger knowledge base and further its evolution. The simplistic structure has contributed to its evaluation and security. Despite certain AES-specific architectural limitations, RC6 has proved to be a versatile and efficient encryption mechanism. AES requirements were quite strict for all candidates involved, but RC6 handled many of the criteria in an efficient manner and when it did not perform the best, the results were not usually the worst of the candidates. The fact that RC6 is not vulnerable to any known attacks reinforces its strength. The evolution of RC6 has resulted in a simple structured cipher providing adequate security. Evaluation of the structure of the algorithm highlights the ever-resounding goal: simplicity.

6 Bibliography

1. Knudsen, L.R., & Meier, W. (1999). “Correlations in RC6.” URL:
http://csrc.nist.gov/CryptoToolkit/aes/round2/comments/19990812-lknudsen.pdf
2. Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M., Foti, J., & Roback, E.
(2000). “Report on the Development of the Advanced Encryption Standard
(AES).” National Institute of Standards and Technology (Department of
Commerce). URL: http://csrc.nist.gov/CryptoToolkit/aes/round2/r2report.pdf
3. O. Baudron, H. Gilbert, L. Granboulan, H. Handschuh, A. Joux, P. Nguyen, F.
Noilhan, D. Pointcheval, T. Pornin, G. Poupard, J. Stern, & S. Vaudenay (1999).
“Report on the AES candidates.” The Second Advanced Encryption Standard
Candidate Conference (National Institute of Standards Technology). URL:
http://csrc.nist.gov/CryptoToolkit/aes/round1/conf2/papers/baudron1.pdf
4. Rivest, R.L (1997). “The RC5 Encryption Algorithm.” URL:
http://theory.lcs.mit.edu/%7Erivest/Rivest-rc5rev.pdf
5. Rivest, R.L., Robshaw, M.J.B., Sidney, R., & Yin, Y.L (1998a). “The RC6 Block

Cipher.” URL: ftp://ftp.rsasecurity.com/pub/rsalabs/rc6/rc6v11.pdf
6. Rivest, R.L., Robshaw, M.J.B., Sidney, R., & Yin, Y.L (1998b). “The Security of the
RC6 Block Cipher.” URL: ftp://ftp.rsasecurity.com/pub/rsalabs/rc6/security.pdf
7. Rivest, R.L., Robshaw, M.J.B., Sidney, R., & Yin, Y.L (2000a). “The Case for RC6
as the AES.” AES Round 2 Public Comment. URL:
http://csrc.nist.gov/CryptoToolkit/aes/round2/comments/20000515-rrivest.pdf
8. Shimoyama, T., Takeuchi, K., & Hayakawa, J. (2000). “Correlation Attack to the
Block Cipher RC5 and the Simplified Variants of RC6.” 3rd AES Conference
(AES3). URL:

http://csrc.nist.gov/encryption/aes/round2/conf3/papers/36-tshimoyama.pdf
Input: 	

 Plaintext stored in four w-bit input registers A,B,C,D

 Number r of rounds

 w-bit round keys S[0,…,2r + 3]

Output: 	

 Ciphertext stored in A,B,C,D

Procedure:

 B = B + S[0]

 D = D + S[1]

 for i = 1 to r do

 {

 t = (B x (2B + 1)) <<< log2 w

 u = (D x (2D + 1)) <<< log2 w

 A = ((A � t) <<< u) + S[2i]

 C = ((C � u) <<< t) + S[2i+ 1]

 (A,B,C,D) = (B,C,D,A)

 }

 A = A + S[2r + 2]

 C = C + S[2r + 3]

Figure 2: RC6 Encryption with RC6-w/r/b (Rivest et al., 1998a)

Input:

 Ciphertext stored in four w-bit input registers A,B,C,D

 Number r of rounds

 w-bit round keys S[0,…,2r + 3]

Output:

 Plaintext stored in A,B,C,D

Procedure:

 C = C - S[2r + 3]

 A = A - S[2r + 2]

 for i = r downto 1 do

 {

 (A,B,C,D) = (D,A,B,C)

 u = (D x (2D + 1)) <<< log2 w

 t = (B x (2B + 1)) <<< log2 w

 C = ((C - S[2i + 1]) >>> t)� u

 A = ((A - S[2i]) >>> u)� t

 }

 D = D - S[1]

 B = B - S[0]

Figure 3: RC6 Decryption with RC6-w/r/b (Rivest et al., 1998a)

Input: 	

 Plaintext stored in four w-bit input registers A,B,C,D

 20 rounds

 32-bit round keys S[0,…,43]

Output: 	

 Ciphertext stored in A,B,C,D

Procedure: 	

 B = B + S[0] //Pre-whitening

 D = D + S[1]

 for i = 1 to 20 do

 {

 t = (B x (2B + 1)) <<< 5

 u = (D x (2D + 1)) <<< 5

 A = ((A � t) <<< u) + S[2i]

 C = ((C � u) <<< t) + S[2i+ 1]

 (A,B,C,D) = (B,C,D,A)

 }

 A = A + S[42] //Post-whitening

 C = C + S[43]

Figure 5: RC6 Encryption for AES with RC6-32/20/[16,24,32]

Input:

 User-supplied b byte key preloaded into the c-word

 array L[0,…, c - 1]

 Number r of rounds

 Pw = Odd((e – 2)2w)

 Qw = Odd((ø – 1)2w)

Output: 		

 w-bit round keys S[0,…, 2r + 3]

Procedure: 	

 S[0] = Pw

 for i = 1 to (2r + 3) do

 S[i] = S[i _ 1] + Qw

 A = B = i = j = 0

 v = 3 x max{c, 2r + 4}

 for s = 1 to v do

 {

 A = S[i] = (S[i] + A + B) <<< 3

 B = L[j] = (L[j] + A + B) <<< (A + B)

 i = (i + 1) mod (2r + 4)

 j = (j + 1) mod c

 }

Figure � SEQ Figure * ARABIC �1�: Key schedule with RC6-w/r/b �(Rivest et al., 1998a)

�

Figure 6: Plaintext Estimates for Cryptanalytic Attacks (Rivest et al., 1998b)

�

Figure 4: RC6 AES Encryption Diagram (Shimoyama et al., 2000)

PAGE
9

[image: image8.bmp][image: image9.bmp][image: image10.png][image: image11.png]