Java Cryptography Cipher Providers 3

Java Cryptography Cipher Providers

Shawn Shuang Zhang

CS 627

Internet and Cryptography

Cryptography has not been so important in our daily life until Internet became a major role. During the past 10 years, people make the letter “e” more and more popular by using it everywhere. We start from e-mail, e-banking, e-business, e-government to e-fraud, e-virus, e-theft. Security, privacy, became major concerns of people using the Internet. Performance is no longer the only focus of developers and manufactures. The conclusion that it’s the Internet drawing the public attention to this mysteries topic is not difficult to get.

Internet brought us convenient life style, low cost communication, but also all kinds of security problems. From the user point of view, we can identify the major security issues and those could be solved by the cryptography techniques.

In order to solve the problems using the cryptography and other security tools. We can classify the solutions to the following three levels.

[image: image2.wmf]Application

Integration

Cryptographer

End User

Programmer

Development

PGP, SSL

?

Math, SPI

Figure 1.
User level. For the end users, developing the security tools is not part of their job. User-friendly applications and plug-ins such as secured layer communication through SSL or PGP will be their choices. The implementation of this level does not require any cryptography knowledge or math. The system administrator sets up accounts for the users manage traffic using cryptography applications under the hood.

Integration level. Mainly programmers, using cryptography tool kits implement secured application. The programmer may know nothing about the cryptography algorithms or how to implement a cryptography provider. Using cryptography APIs as components to construct their applications.

Development level. The cryptography experts and programmers with strong cryptography background building the algorithms and cryptography classes create the base for cryptography applications. Cryptography analysis are considered as part of this level.

Java, Why Java?

Java is one of the most popular programming languages using on the Internet today and gained instant celebrity status. The flexibility of Java promises that it will become the universal glue that connects users with information, whether that information comes from Web servers, databases, information providers, and any other imaginable source. Java so far has gained almost all acceptances by all major vendors except Microsoft.

How in Java?

Before sun launched JDK1.4, the cryptography software comes in two pieces. Authentication is the most widely and frequently used classes with no restriction from US government to export. Most of these classes are included in java.security.* packages. These classes are mainly concerned with the access control, security policy, and permissions. Some of those are not directly related to cryptography. The other piece, the Java Cryptography Extension (JCE), includes so-called “strong cryptography.” JCE is free and also US only. Classes are included in javax.crypto.* Due to the export control regulations, JCE 1.2 is released separately as an extension to the Java 2 platform. In JDK1.4, JCE 1.2.1 has been integrated. The major difference between JCE1.2 and JCE 1.2.1 is JCE 1.2.1 is exportable outside the U.S. and Canada. During the implementation, some of the unqualified (for export) providers have been removed from the package.

· API and SPI

The methods in the cryptographic concept classes are divided into two groups. The first group of methods is the Application Programming Interface, or API. It consists of all public methods that you can use to work with an instance of a concept class. The second group of methods is the Service Provider Interface, or SPI. This is the set of methods that subclasses must implement. By convention, SPI method names all begin with engine.

The API and SPI methods were mixed together in the cryptographic concept classes in JDK 1.1. The java.security.Signature class, for example, contained API methods like initSign() and verify() as well as SPI methods like engineInitSign() and engineVerigy(). To implement a signature algorithm, you would create a subclass of Signature and define all the SPI methods.

In JDK1.2 API methods and SPI methods are split into separate classes. Signature, for example, now contains only API methods. A separate class, java.security,SignatureSpi, contains all the SPI methods. To implement a signature algorithm now, create a subclass of SignatureSpi and define the SPI methods. Whenever you implement a cryptographic algorithm, you’ll need to follow a similar process.

Java security software structure.

[image: image1.jpg]
Figure 2. [1] Page 30 Figure 3-1

Basic Concepts of java cryptography

· JCA

The JavaTM Cryptography Architecture (JCA) framework in the Java Development Kit (JDKTM) 1.2 provides a full range of cryptographic services and algorithms to keep messages sent over the network secure. The framework is extensible and interoperable. Not only can you add cryptographic service implementations by different vendors to the framework, but, for example, the signature service implementation by one vendor will work seamlessly with the signature service implementation by another vendor as long as both vendors’ implementations use the same signature algorithm. Given how implementations can vary from vendor to vendor, the flexibility built into the JCA framework lets you choose an implementation that best meets your application requirements.

· JCE
The JavaTM Cryptography Extension (JCE) is a set of packages that provide a framework and implementations for encryption, key generation and key agreement, and Message Authentication Code (MAC) algorithms. Support for encryption includes symmetric, asymmetric, block, and stream ciphers. The software also supports secure streams and sealed objects.[5]
JCE is designed so that other qualified cryptography libraries can be plugged in as service providers, and new algorithms can be added seamlessly. (Qualified providers are signed by a trusted entity.)

Providers

JCA is build on provider"-based architecture. The term Cryptography Package Provider ("provider" for short) refers to a package or set of packages that implement specific algorithms, such as the Digital Signature Algorithm (DSA) or the RSA Cryptosystem (RSA). A program may simply request a particular type of object (such as a Signature object) implementing a particular algorithm (such as DSA) and get an implementation from one of the installed providers.

Cipher API (Application Programming Interface)

This is the interface of methods called by applications needing encryption services. The API consists of all public methods.

Cipher SPI (Service Provider Interface)

This is the interface implemented by providers that supply specific algorithms. It consists of all methods whose names are prefixed by engine. Each such method is usually called by a correspondingly-named public API method. For example, the engineInitEncrypt method is called by the initEncrypt method.

	
	SunJCE(1.2.1)
	SunJCE(1.2)
	Cryptix
	IAIK-ICE

	RSA
	
	
	
	Yes

	DSA
	Yes
	
	
	Yes

	Diffie-Hellman
	
	Yes
	
	Yes

	X.509v3
	
	
	
	Yes

	AES
	
	
	
	Yes

	DES
	
	Yes
	
	Yes

	Triple DES
	
	Yes
	Yes
	Yes

	DES2X
	
	
	Yes
	

	DESX
	
	
	Yes
	

	IDEA
	
	
	Yes
	Yes

	RC2
	
	
	Yes
	Yes

	RC4
	
	
	Yes
	Yes

	MD2
	
	
	
	Yes

	MD5
	Yes
	
	
	Yes

	SHA-1
	Yes
	
	
	Yes

	Hmac with MD5
	
	Yes
	
	Yes

	Hmac with SHA-1
	
	Yes
	
	Yes

	Blowfish
	
	
	Yes
	

	CAST
	
	
	
	Yes

	CAST5
	
	
	Yes
	Yes

	GOST
	
	
	
	Yes

	Safer
	
	
	Yes
	

	Speed
	
	
	Yes
	

	Square
	
	
	Yes
	

Figure 3.

Figure 4.

SunJCE:

The Java 2 SDK, v 1.4 release comes standard with a JCE provider named “SunJCE”, which comes pre-installed and registered and which supplies the following cryptographic services:

· An implementation of the DES (FIPS PUB 46-1), Triple DES, and Blowfish encryption algorithms in the Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher Feedback (CFB), Output Feedback (OFB), and Propagating Cipher Block Chaining (PCBC) modes. (Note: Throughout this document, the terms “Triple DES” and “DES-EDE” will be used interchangeably.)

· Key generators for generating keys suitable for the DES, Triple DES, Blowfish, HMAC-MD5, and HMAC-SHA1 algorithms.

· An implementation of the MD5 with DES-CBC password-based encryption (PBE) algorithm defined in PKCS #5.

· “Secret-key factories” providing bi-directional conversions between opaque DES, Triple DES and PBE key objects and transparent representations of their underlying key material.

· An implementation of the Diffie-Hellman key agreement algorithm between two or more parties.

· A Diffie-Hellman key pair generator for generating a pair of public and private values suitable for the Diffie-Hellman algorithm.

· A Diffie-Hellman algorithm parameter generator.

· A Diffie-Hellman “key factory” providing bi-directional conversions between opaque Diffie-Hellman key objects and transparent representations of their underlying key material.

· Algorithm parameter managers for Diffie-Hellman, DES, Triple DES, Blowfish, and PBE parameters.

· An implementation of the HMAC-MD5 and HMAC-SHA1 keyed-hashing algorithms defined in RFC 2104.

· An implementation of the padding scheme described in PKCS#5.

· A keystore implementation for the proprietary keystore type named “JCEKS”.

New providers may be added statically or dynamically. Clients may also query which providers are currently installed.

The different implementations may have different characteristics. Some may be software-based, while others may be hardware-based. Some may be platform-independent, while others may be platform-specific. Some provider source code may be available for review and evaluation, while some may not.

Cryptix

Cryptixtm is an international volunteer effort to produce robust, open-source cryptographic software libraries. Cryptix products are free, both for commercial and non-commercial use and are being used by developers all over the world. Development is currently focused on Java.[2]

Support Algorithms and Standards:

· Blowfish this class implements the Blowfish block cipher.

· CAST5 A subclass of Cipher to implement the CAST5

· DES is a block cipher with an 8 byte block size.

· DES_EDE3 This class implements Triple DES EDE encryption with three independent keys.

· DES2X This class implements DES2X encryption with four independent keys.

· DESX This class implements DESX encryption with two independent keys.

· IDEA is a block cipher with a key length of 16 bytes and a block length of 8 bytes.

· LOKI91 is a proposed Australian alternative cipher to DES.

· RC2 A subclass of Cipher to implement the RC2 (TM) block cipher algorithm in Java.

· RC4 This class implements the RC4 (TM) stream cipher.

· Rijndael --pronounced Reindaal-- is a symmetric cipher with a 128-bit block size and variable key-size (128-, 192- and 256-bit).

· SAFER A subclass of Cipher to implement the SAFER algorithm in Java.

· SPEED is a block cipher with variable key size, data block size and number of rounds (in the style of RC5).

· Square A subclass of Cipher to implement a Java class of the Square algorithm.

IAIK-ICE

Locate in Austria, IAIK-java Group, part of the institute for applied information processing and communications (IAIK). Mainly working on Java-Cryptography and Java-Security.

The IAIK Java Cryptography Extension (IAIK-JCE) is a set of APIs and implementations of cryptographic functions, including symmetric, asymmetric, stream, and block encryption methods. As we have already mentioned above It supplements the security functionality of the default Java JDK 1.1.x / JDK 1.2, which itself includes digital signatures (DSA) and message digests (MD5, SHA).

Supported Cipher algorithms:

· DES (Data Encryption Standard)

Symmetric 64-bit block encryption algorithm as defined by NIST in FIPS PUB 46-1 and FIPS PUB 46-2
-

· DESede (Triple DES)

A variant of the Data Encryption Standard (DES) using an encrypting-decrypting-encrypting (EDE) scheme based on two or three keys

3DES

· IDEA (International Data Encryption Algorithm)

Symmetric 64-bit block encryption algorithm, patented by Ascom Systec Ltd.; key length: 128 bits

· Blowfish (Blowfish)

64-bit block cipher with variable length keys (up to 448 bits); developed by Bruce Schneier

· GOST (Gosudarstvennyi Standard)

Russian 64 bit Feistel based block cipher with a key length of 256 bits; described in the goverment standard GOST 28147-89

· CAST128 (Carlisle Adams and Stafford Tavares)

64 bit Feistel type block cipher with a key length of 40-128 bits

CAST, CAST5

· RC2 (Ron´s Code 2; Rivest Cipher 2)

Variable-key-size 64-Bit block cipher; developed by Ron Rivest for RSA Data Security, Inc.; described in RFC2268
· RC4 (Ron´s Code 4; Rivest Cipher 4)

Variable-key-size stream cipher; developed by Ron Rivest for RSA Data Security, Inc.; the IAIK-JCE implementation is based on code which has been posted to the sci.crypt News Group

· RC5 (Ron´s Code 5; Rivest Cipher 5)

Variable-key-size 64-Bit block cipher with variable number of rounds; developed by Ron Rivest for RSA Data Security, Inc. The algorithm is patented, for licensing conditions contact RSA DSI.

· RSA (Rivest Shamir Adleman)

Public key encryption algorithm, developed by Ron Rivest, Adi Shamir and Leonard Adleman; described in PKCS#1
· PbeWithMD5AndDES_CBC (password based “MD5 with DES-CBC” algorithm)

Password based key-encryption algorithm for encrypting a given message with the DES algorithm in CBC mode using a secret key which is derived from a password with the MD5 message-digest algorithm; specified in PKCS#5
· PbeWithSHAAnd3_KeyTripleDES_CBC (password based “SHA with TripleDES-CBC” algorithm)

Password based key-encryption algorithm for encrypting a given message (octet string) with the TripleDES algorithm in CBC mode using a secret key which is derived from a password with the SHA hash algorithm as described in PKCS#12
· PbeWithSHAAnd40BitRC2_CBC (password based “SHA with 40BitRC2-CBC” algorithm)

Password based key-encryption algorithm for encrypting a given message with the RC2 algorithm in CBC mode using a 40Bit secret key which is derived from a password with the SHA hash algorithm as described in PKCS#12
· RC6 (AES candidate)

128 bit block cipher with 20 rounds aimed at the keysizes of 128, 192, and 256 bits, specified by Ronald L. Rivest, M.J.B. Robshaw, R. Sidney, and Y.L. Yin in their paper The RC6 Block Cipher available from the AES Web site at http://www.nist.gov/aes/.

· MARS (AES candidate)

128 bit block cipher with a total of 32 rounds and accepts keys from 128 to 448 bits, specified by IBM in their paper MARS - a candidate cipher for AES available at http://www.research.ibm.com/security/mars.html.

· Twofish (AES candidate)

128-bit Feistel-type block cipher that accepts a variable-length key up to 256 bits, developed by B. Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall and N. Ferguson, see http://www.nist.gov/aes/.

· Rijndael (Advanced Encryption Standard AES)

Block cipher with variable block length (this implementation uses 128 bit) and key length, designed by Joan Daemen and Vincent Rijmen, see http://www.nist.gov/aes/.

References

[1] Java Cryptography, by Jonathan Knudsen, 1998

[2] http://www.cryptix.com

[3] http://venus.math.klte.hu/docs/cryptix32/xjava/security/Cipher.html
[4] Internet crytography

[5] java.sun.com/products/jce/

Name�
Full Name�
Location�
Free?�
U.S. only?�
�
SunJCE�
Sun JCE Security Provider �
� HYPERLINK "http://java.sun.com/products/jsk/1.4/jce" �http://java.sun.com/products/jsk/1.4/jce��
Yes�
Yes�
�
Cryptix�
Cryptix for Java�
� HYPERLINK "http://www.systemics.com/software/cryptix-java" �http://www.systemics.com/software/cryptix-java��
Yes�
No�
�
IAIK�
IAIK Security Provider�
� HYPERLINK "http://wwwjce.iaik.tu-graz.ac.at/" �http://wwwjce.iaik.tu-graz.ac.at/��
No�
No�
�

�

