PAGE

The VAX Architecture

CS–350–1: Computer Organization

Spring 2004

William French

Ahmed M. Kareem

Horatiu Paul Stancu

Steve Tran

Table of contents

	1. History and Basic Architecture…………………………………………..
	1

	 1.1 Introduction………………………………………………………….
	1

	 1.2 VAX Architecture Improvements Over the PDP-11……………...
	2

	 1.3 An Overview of the VAX Architecture…………………………….
	2

	 1.4 VAX Data Types…………………………………………………….
	3

	2. Instruction Formats and Addressing Modes…………………………….
	4

	 2.1. Instruction Format……………………………………………………
	4

	 2.2. Addressing Modes…………………………………………………….
	4

	 2.3. Operand Modes……………………………………………………….
	6

	3. Instruction………………………………………………………………….
	7

	 3.1 Instructions Introduction……………………………………………..
	7

	 3.2 Data Transfer Instructions……………………………………………
	7

	 3.3 Arithmetic/Logical Instructions………………………………………
	7

	 3.4 Control Instructions…………………………………………………...
	8

	 3.5 Procedure Instructions………………………………………………..
	8

	 3.6 Floating-point Instructions……………………………………………
	8

	4. Memory Management……………………………………………………..
	10

	 4.1 Introduction to memory management……………………………….
	10

	 4.2 Virtual Address Space………………………………………………...
	10

	 4.3 Virtual Address Format………………………………………………
	11

	 4.4 Memory Protection……………………………………………………
	12

	Conclusion……………………………………………………………………
	12

	Bibliography
	

1.1 Introduction

The purpose of this project is to explain how the VAX architecture works in terms with what we have learned in CS-350.

Even though the PDP-11 family architecture was considered one of the greatest accomplishments of Digital Equipment Corporation (DEC) line of equipment, as programmer-needs exceeded the 64 kilobytes of memory, which was the maximum amount that could have been directly addressed by a 16-bit address, it was time to create a newer and more advanced architecture. In 1975 a team was put together to create a new line of machines that would replace the PDP-11, and powerful enough to cover customer needs for many years to come. This new line of machines was the VAX (originally stood for Virtual Address eXtention). On October 25, 1977, the VAX was introduced by the Digital Equipment Corporation as the first 32-bit machine available, which was designed from ground up. The introduction of VAX and its operating system (VMS) was a revolutionary step in the history of computer architecture.

Since the beginning, the VAX design was set to create an architecture that would work compatibly with all members of the VAX family. This special characteristic of the VAX design gave a great flexibility to hardware engineers to build a big variety of hardware without being limited by software details, and gave programmers the freedom and the confident to run their programs on any present or future member of the VAX family. The designers of the VAX architecture also set may other important goals for their system to fulfill.

Later, the VAX architecture was replaced with DEC’s 64-bit Alpha architecture. Currently, the good features of the Alpha architecture are being evolved in HP’s Itanium processors.

The following are some of the goals achieved by the VAX architecture:

1. The VAX architecture has maximal compatibility with its predecessor the PDP-11.

a. Shares the same byte addressing.

b. Similar format for peripheral I/O devices and interrupt structures.

c. Identical data formats.

d. Similar assembly language format.

2. The VAX has extended the PDP-11’s virtual address space to a 32-bit virtual address.

3. The VAX has improved bit efficiency due to its wide range of data types and new addressing modes tended the PDP-11’s virtual address space to a 32-bit virtual address.

4. The VAX has an instruction set that can be extended with new data types and operators consistently with the already defined data types and operators.

5. The VAX has a well designed instruction set together with its operators, data types, and addressing modes, which makes it easily useable by high level languages.

6. The VAX system presents the customer with a wide range of options and prices.

1.2 VAX Architecture Improvements over the PDP-11
The VAX architecture was a major extension of the PDP-11 machine family. This new extension shared many similarities with the PDP-11, such as byte addressing, I/O and interrupt structures, and identical data formats. Even though the VAX instruction set is not entirely compatible with that of the PDP-11, most PDP-11 programmers could easily learn how to implement it. These similarities between the VAX and the PDP-11 architectures help easily convert existing PDP-11 programs to VAX system programs. The VAX architecture also supports a PDP-11 compatible mode to run existing PDP-11 programs that do not need the new features of VAX.

On the other hand, the VAX system had many differences that made it a much more powerful architecture compared to the PDP-11. One of the major features of the VAX architecture was its greatly extended 32-bit address space compared to the PDP-11’s 16-bit address space. The VAX 32-bit address space created 4 million bytes of address space that was not available in any other computer at that time. Another improvement found in the VAX architecture was the additional instructions and data type, with new addressing modes. The VAX architecture also provided a more advanced memory management and protection than the PDP-11. Also, the VAX used demand-paged virtual memory, while the PDP-11 used the less advanced paged memory management.

1.3 An Overview of the VAX Architecture
The VAX processor contains 32-bit general-purpose registers that are used for temporary address and data storage. 16 of those registers, which are named R0 through R15, are available to the assembly language programmer and the instruction set. Some of these registers are special purpose registers, such as the stack pointer (SP) and the program counter (PC). Also, inside the VAX processor there is the processor status longword (PSL). The PSL is a 32-bit general register that contains the number of processor state variables. The first part of the PSL, which consists of 16-bits, is referred to as the processor status word (PSW). The PSW contains unprivileged information about the current state of the processor, and a user program can change its value. However, the next 16 bits of the PSL contains privileged information and cannot be changed by a user program. The VAX architecture also provides 18 vector registers. Refer to Table 1.1 for more information on names and descriptions of the VAX registers.

Table 1.1: VAX general-purpose registers, from OpenVMS Debugger Manual.

	VAX General Purpose Registers

	Name
	Description

	%R0...%R11
	General-purpose registers (R0...R11)

	%AP (%R12)
	Argument pointer (AP)

	%FP (%R13)
	Frame pointer (FP)

	%SP (%R14)
	Stack pointer (SP)

	%PC (%R15)
	Program counter (PC)

	%PSL
	Processor status longword (PSL)

	VAX Vector Registers and Vector Control Registers

	%V0...%V15
	Vector registers V0...V15

	%VCR
	Vector count register

	%VLR
	Vector length register

	%VMR
	Vector mask register

As for the VAX system buss, all VAX machines have a special internal bus design that must completely match the VAX architecture specifications in addressing, interrupt, and many other aspects, in order for the CPU components and memory to communicate. The VAX main system bus is also designed with high compatibility to permit the connection of older I/O devices.

1.4 VAX Data Types

The VAX computer is a byte addressable machine. Therefore, items that are larger than a byte consist of grouping consecutive bytes in address memory. For example, a 32-bit longword data actually consists of four consecutive bytes in memory. Inside of each byte, bits are arranged from least significant (0) to most significant (n-1). Bytes are also arranged from least significant to most significant, inside items larger than one byte, and the address of each item is the address of the byte that contains bit 0. The VAX architecture has a wide range of data types, which includes integer and floating point, variable-length bit field, character string, trailing numeric string, leading separate numeric string, and packed decimal string. There are also many different categories within these different data types. Refer to Table 1.2 for more information on variations in integer and floating-point data types.
Table 1.2: VAX Integer and floating Data Types

	Integer Type
	Size
	Unsigned
	Signed

	Byte
	8 bits
	0 – (28-1)
	-27 – (27-1)

	Word
	16 bits
	0 – (216-1)
	-215 – (215-1)

	Longword
	32 bits
	0 – (232-1)
	-231 – (231-1)

	Quadword
	64 bits
	0 – (264-1)
	-263 – (263-1)

	Octaword
	128 bits
	0 – (2128-1)
	-2127 – (2127-1)

	Floating point
	Size
	Precision

	F_floating
	32 bits
	About 7 decimal digits

	D_floating
	64 bits
	About 16 decimal digits

	G_floating
	64 bits
	About 15 decimal digits

	H_floating
	128 bits
	About 33 decimal digits

2.1. Instruction Format

Instructions in the VAX-11 instruction set are variable length. All instructions have a one byte opcode, followed by an operand specifier for each operand. Operand specifiers consist of a mode byte describing the addressing mode and general register being used, and zero or more bytes containing additional information. Each instruction has a fixed number of operands, although different instructions have from zero to six operands.

2.2. Addressing Modes

The VAX-11 supports sixteen addressing modes. Each operand is represented in memory with an operand specifier, which consists of a mode byte followed by from zero to five additional bytes of information. The mode byte is broken into two fields: a four-bit mode specifier and a four-bit register designator.

 In the following table, ‘‘length’’ refers to the length of the operand, as specified by the instruction and c (X) is the contents of X:

Table 2.1: Addressing modes, from “http://www.cs.rit.edu/~icss352/document/vax_pkt.pdf”

	Mode
	Name
	Syntax Examples
	Effective Address

	0-3
	literal
	#lit, S^#lit
	none

	4
	indexed
	i[Rn]
	i + (c(Rn) * length)

	5
	register
	Rn
	none

	6
	register deferred
	(Rn)
	c(Rn)

	7
	autodecrement
	-(Rn)
	decrement Rn by length, then c(Rn)

	8
	autoincrement
	(Rn)+
	c(Rn), then increment Rn by length

	9
	autoincrement deferred
	@(Rn)+
	c(c(Rn)), then increment Rn by 4

	A
	byte displacement
	D(Rn), B^D(Rn)
	D + c(Rn)

	B
	byte displacement deferred
	@D(Rn), @B^D(Rn)
	c(D + c(Rn))

	C
	word displacement
	D(Rn), W^D(Rn)
	D + c(Rn)

	D
	word displacement deferred
	@D(Rn), @W^D(Rn)
	c(D + c(Rn))

	E
	long displacement
	D(Rn), L^D(Rn)
	D + c(Rn)

	F
	long disp. deferred
	@D(Rn), @L^D(Rn)
	c(D + c(Rn))

Literal

Literals operands are ones whose values are found in the instruction rather than in a register or somewhere else in memory. Literals can be represented using modes 0, 1, 2, and 3, or with mode 8. Literals cannot be used as destination operands.

Literals expressed with the syntax S^#nnn are represented using one of the modes 0, 1, 2, and 3; those expressed as I^#nnn are represented using mode 8. For literals expressed as #nnn, the assembler examines the value (nnn) and selects the representation based on that value: integers in the range 0..63, inclusive, are represented using mode 0, 1, 2, or 3; integers outside that range, or addresses, are represented using mode 8.

For modes 0, 1, 2, and 3, the low-order two bits of the mode is combined with the four bits of the register field to yield an unsigned six-bit field, which contains the literal value (0..63). For mode 8, the literal (now called an immediate operand) is held in a series of bytes within the instruction sequence.

Register

Register mode, Rn, is used to indicate that the data to be manipulated will be found in the specified register, rather than in memory. Register mode cannot be used for any operand which must have a memory address.

Register deferred mode, (Rn), is used to indicate that the specified register contains a memory address which is the actual (effective) address of the operand.

Autoincrement/Autodecrement

The autoincrement and autodecrement modes, (Rn)+ and -(Rn), combine the effect of register deferred mode with automatic modification of the specified register. For both types, the register is modified through the addition or subtraction of the length of the operand, in bytes; thus, for a longword instruction, the modification value is 4.

Autoincrement mode uses the initial contents of the specified register as the effective address, and then adds the length to the register. Autodecrement mode first subtracts the length from the register, and then uses the resulting value as the effective address.

Autoincrement deferred mode, @(Rn)+, takes the initial contents of the register as the address of an indirect longword in memory; the register is then incremented by 4, which is the length of the indirect longword. The contents of the indirect longword are retrieved from memory, and are used as the final effective address for the operand.

Displacement

The displacement modes are used whenever the address of the operand is to be calculated at execution time by adding the contents of a specified register and a one-, two-, or four-byte offset value. The three basic displacement modes (byte, word, and longword) indicate the size of the offset field within the instruction. In all cases, the displacement is sign-extended to 32 bits (if necessary), and the sum of the extended displacement and the current contents of the specified register is computed; this sum is the effective address of the operand.

Displacement operands have the syntax d(Rn), where d is the displacement. Normally, the assembler selects the displacement field size by examining the displacement itself: integers in the range -128..127 are represented using byte displacement; those outside this range, but within the range -32768..32767 are represented using word displacement; and other integers, and addresses, are represented using longword displacement. This can be overridden by the programmer through the use of the prefix operators B^, W^, and L^ to force a specific displacement size to be used.

Displacement deferred operands, @d(Rn), compute the effective address the same way, by adding the sign-extended displacement and the contents of the specified register. This is taken as the address of an indirect longword; its contents are retrieved from memory, and are used as the final effective address of the operand.

All displacement modes occupy two to five bytes in the instruction sequence: the mode byte is immediately followed by the one-, two-, or four-byte displacement.

Indexed

Indexed mode is a ‘‘combination’’ addressing mode; it must be used in conjunction with one of the modes described above, with the exception of literal mode. This other addressing mode is called the base mode.

Indexed mode is specified by following the base mode with an index specifier, [Rn), in the source code. In the machine code, the index mode byte precedes the base mode byte; e.g., the operand (R4)+[R6] is represented as a mode byte of 46 (indexed mode on R6) followed by the byte 84 (autoincrement mode on R4).

The base mode is evaluated as described above to form the initial effective address. Next, the contents of the index register are scaled by multiplying them by the operand length; this product is added to the initial effective address to form the final effective address of the operand.

2.3. Operand Modes

The assembler also uses some operand modes in conjunction with the program counter (R15) to encode memory references. These modes are referred to as program counter modes in this case, with the following names:

Table 2.2: Operand modes, from “http://www.cs.rit.edu/~icss352/document/vax_pkt.pdf”

	Mode
	Name
	Syntax Examples
	Effective Address

	8
	immediate
	#lit, I^#lit
	c(R15), then increment R15 by length

	9
	absolute
	@#addr
	c(c(R15)), then increment R15 by 4

	A
	byte relative
	addr, B^addr
	c(R15) + calculated displacement

	B
	byte relative deferred
	@addr, @B^addr
	c(c(R15) + calculated displacement)

	C
	word relative
	addr, W^addr
	c(R15) + calculated displacement

	D
	word relative deferred
	@addr, @W^addr
	c(c(R15) + calculated displacement)

	E
	long relative
	addr, L^addr
	c(R15) + calculated displacement

	F
	long rel. deferred
	@addr, @L^addr
	c(c(R15) + calculated displacement)

For memory operands whose addresses are known to the assembler (i.e., they are within the module being assembled), the assembler uses displacement modes; they are known as relative or PC-relative addresses. The displacement is calculated by subtracting the address of the first byte following the displacement field itself in the instruction from the address of the operand, yielding a signed absolute distance to the operand. The size of the field is chosen according to the displacement’s value: those in the range -128..127 use byte displacement; those in the range -32768..32767 use word displacements; and all others use longword displacement. Again, the B^/W^/L^ prefixes are optional.

For memory operands whose addresses aren’t known (e.g., operands defined outside the module being assembled), in situations where the calculated displacement is too large to fit within a 32-bit signed longword, or when the @# prefix is explicitly used on the operand, the assembler uses absolute addressing - the operand address is placed directly in the instruction sequence, and mode 9 (autoincrement deferred) addressing is used from R15. These encodings always use a longword to hold the operand address; for external operands, the longword left by the assembler is filled in by the operating system when the program is loaded into memory for execution.

Literal operands whose values are not absolute or out of the inclusive range 0 to 63, or literals which are explicitly specified with the I^ prefix, are encoded using mode 8 (autoincrement) and R15. Again, a longword extension is always used to hold the literal.

(Department of computer science, Rochester Institute of Technology.)

3.1 Instructions Introduction

In the VAX architecture, data types, their lengths, and their names are a little different from the more common MIPS architecture. Integers can be 8, 16, 32, or 64 bits. In the more common MIPS architecture, their names, from smallest to biggest, are byte, half word, word, and double word. In VAX, it is byte, word, long word, and quad word. Floating point data types can be 32 or 64 bits but they are also called different things. In MIPS, the 32 bit floating point is called Single Precision while the VAX name is F_floating. The 64 bit floating point in MIPS is called double precision while in VAX it is called D_floating or G_floating. Character strings are the same for both.

Just like any other instruction set architecture, VAX has many instructions in its language. All instructions also fall into smaller subcategories. Some examples would be data transfer, load/store, arithmetic, comparison and many others. I will touch down on data transfer, arithmetic/logical, conditionals, procedures, and floating point instructions only. There are only a few here but there are too many to list that it would be useless to create a list just for the sole purpose of this paper.

3.2 Data Transfer Instructions

In the VAX instruction set architecture, the Data Transfer instructions move data between bytes, half-words, words, and double word operands. What they basically do is move data from one place to another. Some data transfer instructions would be MOV*, MOVZB*, MOVA*, PUSH*. The * is whatever data type is being worked on. The MOV* instruction means “move between two operands.” The MOVZB* moves a byte to a half word or word, extending it with zeros. Half words and words were explained a little in the section before this. MOVA* moves the 32-bit address of an operand. PUSH* pushes the operand onto a stack.

3.3 Arithmetic/Logical Instructions

Operations on integer or logical bytes, half words, and words are done with Arithmetic/logical instructions. The instruction to add two or more operands together is done with ADD. In the case of adding two numbers, the addend operand is added to the sum operand so the sum operand is replaced by the new total. The instruction for subtraction is SUB. Comparing two or more numbers can be done with CMP*. The first one is compared to the second one. Clearing everything is done with the predictable CLR* function. After it is used, the operand being used will be set to zero. Another useful instruction would be CVT. This is used to convert numbers into other formats. The following table is a list of commonly used converting instructions. There are only a few out of the many available instructions.

	CVT**
	For example, CVTLW is the instruction to convert a Long to a Word

	BW
	Convert Byte to Word

	BL
	Convert Byte to Long

	WB
	Convert Word to Byte

	WL
	Convert Word to Long

	LB
	Convert Long to Byte

	LW
	Convert Long to Word

3.4 Control Instructions

Control instructions are conditional and unconditional instructions. Some examples are greater than or equal to, less than or equal to, and just plain equals to. The instruction for equals to is BEGL and not equals to is BNEQ. The less than or equal to is BLEG and greater than or equal to is BGEQ. Jumps are designed by the JMP command. The program counter register is replaced by the destination operand on that line. JSB is the code for jumping to another subroutine. When this is being used, the value of the PC is pushed onto a stack as a long word, and then the operand replaces the PC. To get it back, use the instruction RSB. With this return from subroutine, the RSB command replaces the PC with whatever was on the stack. AOBLEQ is used to add one to the operand if the first is less than or equal to the second.

3.5 Procedure Instructions

Procedure instructions are instructions that you use to call or return from other procedures. Some examples are CALL and RET. There are two types of CALL commands. CALLG is used to call procedure with a General Argument List. CALLS is the instruction to call procedure with a Stack Argument List. RET is a return from procedure call. In all three of these instructions, the stack pointer register is changed somehow.

3.6 Floating-point Instructions

Before we can talk about floating point instructions, we have to remember about the four floating type numbers. They are D_format, F_format, G_format, and H_format that were discussed before. Each floating-point instruction can have a suffix that applies to the four data types. For example, the ADD operand can be broken down into this syntax.

ADD (floating point type: must be F, D, G, or H) (Number of operands: 2 or 3 only)

For example, to add 2 F_Floating operands together, you must write it out as ADDF2. To add 3 H_floating operands together, the instruction is written out as ADDH3. For most floating point instructions, the general rule is to write the operation out, then include the suffix F, D, G, or H. Here is a chart of common examples of this convention.

DIV
= divide

MOV = move

NEG = the destination operand is replace by the negative

	DIVF2

	Divide F_floating 2 operand

	DIVF3
	Divide F_floating 3 operand

	DIVD2
	Divide D_floating 2 operand

	DIVD3
	Divide D_floating 3 operand

	DIVG2

	Divide G_floating 2 operand

	DIVG3
	Divide G_floating 3 operand

	DIVH2

	Divide H_floating 2 operand

	DIVH3

	Divide H_floating 3 operand

	MNEGF
	Move Negated F_floating

	MNEGG
	Move Negated G_floating

	MNEGH
	Move Negated H_floating

	MOVF
	Move F_floating

	MOVD
	Move D_floating

4.1 Introduction to memory management.

Memory management consists of the hardware and software that control the allocation and use of memory. Memory management is especially useful in a multiprogramming system where several processes may reside in physical memory at the same time; something must manage where this memory is stored. Memory management aids in ensuring that one process will not affect other processes or the operating system. VAX architecture uses memory protection and multiple address spaces.

The software reliability is further improved by four hierarchical access modes that provide memory access control. From most to least privileged they are: kernel, executive, supervisor, and user. For each of the access modes there are three types of security: individual page level, read only, and read/write only. Each location accessible to one mode is, of course, accessible to all other more privileged modes.

Memory management then provides the CPU with all mapping information. The CPU first generates virtual addresses when an image is executed. The addresses, before they can be used as access instructions, must be translated into physical addresses. Memory management maintains tables of mapping information that keep track of where each 512-byte virtual page will be located in memory. The CPU uses this information when it translates virtual addresses to physical addresses.

Upon translating virtual addresses into physical addresses memory management then provides memory protection and memory mapping mechanisms of VAX architecture. It then does the following things:

1) Provides a large address spades for instructions and date

2) Allows data structures up to one gigabyte

3) Provides convenient and efficient sharing of instructions and data

4) Contributes to software reliability

The virtual memory system also provides a large address space, which allows a program to run on hardware with small memory configurations.

4.2 Virtual Address Space

A virtual address is a 32-bit unsigned integer specifying a byte location in the address space. The virtual memory is too large to be mapped in any available main memory, so the memory management provides the mechanism to map the active part of the virtual address space to the available physical address space.

The virtual address space is broken down into two parts: per-process space, and system space. The pre- process space is the half of the virtual address space with smaller addresses (00000000 – 7FFFFFFF). The per-process space is broken down into two regions: the program and the control region. Each process has a separate address translation for per-process work, so the space for each process can be completely separate.

The system space is the other half of the Virtual Address Space (addresses 80000000 through FFFFFFFFF). Every process uses the same address translation map for system space, so the space is shared among each process that is run. The address map for system space is not context switched, so each process can be run together.

The Virtual Address Space is shown on the table below:

	
P0 (program) region

↓ P0 region growth direction

	↑ P1 region growth direction

P1 (control) region

	system region

↓ system region growth direction

	reserved region

4.3 Virtual Address Format

 Each instruction and operand in memory has 32-bit virtual address space generated by the VAX architecture. The system translates each virtual address to a physical address, as the program executes. The virtual address consists of a region field, a virtual page number field, and a byte within page field as shown in the figure below:

 313029

 9 8

 0

	reg
	Virtual page number
	Byte within page

The virtual page number field, bits 31-9 of the virtual address, specifies the virtual page to be referenced. The virtual address space contains 8,388,608 pages. The Byte within page field, which is bits 9-0, specifies the byte offset within the page. The region field, bits 31-30, specifies which of the four regions the virtual address references. If bit 31 of the virtual address is 1, then the address is in the system space. If the bit is 0, then the address is in the per-process space. Bit 30 then determines which region is used. Within a system space, bit 30 distinguishes between the system region, and the reserved region. When bits 31 and 30 are 11 (binary), the address will refer to the reserved region. When they are 10(binary) the address refers to the system region. Within per-process space, when bits 31-30 are 01 the control region is referenced; and when the bits are 00 the program region is referenced.

4.4 Memory Protection

Memory protection is the process of validating whether a particular type of memory access is to be allowed on a certain page. The access is controlled by protection codes that specifies whether or not read or write references are allowed. There are several access modes. From most privileged to least privileged they are: Kernel, Executive, Supervisor, and User.

Each page in the virtual address space is protected according to its use. The system space is shared, but a program may be prevented from changing or even reading portions of the address. The protection code allows for a choice of protection for each processor mode, within a few boundaries:

1) Each mode’s access can be read-write, read-only, or no-access.

2) If any level has read access, then all more privileged levels also have read access.

3) If any level has write access, then all more privileged levels also have write access.

The protection codes can be seen on the table below.

	
	
	
	
	
	
	
	

	Name
	Mnemonic
	Decimal
	Binary
	Kernel
	Exec
	Super
	User

	No access
	NA
	0
	000
	none
	none
	none
	none

	Reserved
	
	1
	0001
	UNPREDICTABLE

	Kernel white
	KW
	2
	0010
	write
	none
	none
	none

	Kernel read
	KR
	3
	0011
	read
	none
	none
	none

	User write
	UW
	4
	0100
	write
	write
	write
	write

	Exec write
	EW
	5
	0101
	write
	write
	none
	none

	Exec read, kernel write
	ERKW
	6
	0110
	write
	read
	none
	none

	Exec read
	ER
	7
	0111
	read
	read
	none
	none

	Super write
	SW
	8
	1000
	write
	write
	write
	none

	Super read, exec write
	SREW
	9
	1001
	write
	write
	read
	none

	Super read, kernel write
	SRKW
	10
	1010
	write
	read
	read
	none

	Super read
	SR
	11
	1011
	read
	read
	read
	none

	User read, super write
	URSW
	12
	1100
	write
	write
	write
	read

	User read, exec write
	UREW
	13
	1101
	write
	write
	read
	read

	User read, kernel write
	URKW
	14
	1110
	write
	read
	read
	read

	User read
	UR
	15
	1111
	read
	read
	read
	read

Conclusion

When the VAX architecture was first built, it was considered as one of the first architectures to use a 32-bit address space, complex instruction set, and a 128-bit floating point precision. The VAX and its operating system the VMS (Virtual Management System) became most popular during 1980s. However, their popularity started to decline from the beginning of 1990s. Currently, the latest version of the VMS is the OpenVMS. Although the VAX architecture was the primary platform for the VMS, OpenVMS was designed in a way to extend beyond the VAX to more advanced architectures such as the 64-bit Alpha, which was the line of architecture that replaced the VAX. However, the Alpha also went out of use due to some major flaws.

As DEC was overtaken by Compaq and later by HP, the useful features of the Alpha architecture were reused in the HP’s Itanium processors.

BRUNNER, RICHARD A (1991). VAX Architecture Reference Manual.: Digital Equipment

Corporation; ISBN 1-55558-057-2.

DEPARTMENT OF COMPUTER SCIENCE, ROCHESTER INSTITUTE OF TECHNOLOGY (2000). “VAX Architecture & Assembly Reference”.
URL: http://www.cs.rit.edu/~icss352/document/vax_pkt.pdf

(2001). “OpenVMS documentation.”

 URL: http://h71000.www7.hp.com/DOC/73final/4538/4538pro_064.html
(2001). “VAX MACRO and Instruction Set Reference Manual.”

 URL: http://cs.felk.cvut.cz/vms73/v73/4515/4515pro_012.html

0000 0000:

3FFF FFFF:

4000 0000:

7FFF FFFF:

8000 0000:

BFFF FFFF:

0000 0000:

FFFF FFFF:

P0 length

per-process

space

system

space

P1 length

system length

