The Intel 8086 Processor

CS-350-2: Computer Organization

Spring 2004

Joshua Broome

Christopher Lindsay

Jonathan Kagarise
Dave Overstrom

Table of Contents

Introduction 







2
History







2
Hardware Architecture Overview




3
Minimum System Mode




4

Address/Data Bus Description



4
Control/Interrupt Signals




4
Maximum System Mode




4
Bus Interface and Execution Units



5
8086 Assembly Programming




5



8086 Instructions





6
Registers






7


Instruction Form





9
Memory Interface






10
Input / Output






11
Programmed I/O





11
Interrupts I/O






12
DMA I/O






12
Future Processors after 8088




13
Bibliography







14
Introduction

In 1971, Intel introduced its first single chip microprocessor, the Intel 4004.  It allowed computers to be built even smaller, because no large vacuum tubes had to be used.  The processor didn’t have much power and was originally used for a processor in a calculator.  The goal for the 4004 was 1Mhz speed, but only reached 740 kHz.  This led to the eventual production of the Intel 8080 in 1974, which had 16-bit address bus and an 8-bit data bus, making it a faster processor.  In 1978, Intel used the 8080 design to produce the Intel 8086 and Intel 8088.  These processors would feature four 16-bit general registers.  The 8088 was the processor of choice for IBM’s microcomputer, which was one of the most popular in the 1980’s.  The production of the 8086 and 8088 paved the way for future processor design (Simmons, 2003).

History

Before the production of the 8086 and the 8088 microprocessors, the Intel Corporation came up with the Intel 4004 processor.  It was the first true microprocessor and allowed computer speed and intelligence to be placed into air bags, cell phones, elevators, key chains, etc..  The competitors in the processor market at the time were producing chips similar to and better than the 4004.  The reason Intel still dominates the market was they made it very easy to adopt the 4004 by releasing complete development systems to engineers to aid in their software development.  Also, by the time Intel developed the 8088, IBM chose it over Motorola’s processor because of the delays.  Intel’s domination of the processor market is a direct result of the 4004 (Kanellos, 2001).

Shortly after the production of the 4004, Intel came out with the 8008 in 1972.  The 8008 was similar to the 4004, but now could process data in 8 bits.  The Intel company then expanded its authority over the market when it produced the chip for the company Datapoint.  Datapoint was a terminal manufacturing company that couldn’t pay for the chip at the end of the contract.  In order to settle the deal, Datapoint gave the rights to the instruction set to the 8008, which is still used as the instruction set for the X86 architecture (Kanellos, 2001).

The next big breakthrough before the 8086 was the 8080 microprocessor, developed in 1974.  It expanded on the idea of the 8008, but added a more complex instruction set and a set of 40 pins.  The 8080 was the best processor at that time that was using 8 bits instead of 4 bits.  Dean McCarron, principal analyst at Mercury Research in 2001, said this about the 8080, “With 4-bit processors, the level of complexity is minimal…The 8080 was a home run”(Kanellos, 2001).  The 8080 was the last update to the 8-bit processors until the 8086 came out in 1978.  
The most important part of Intel 8086 and 8088 processors was that the microchips introduced the X86 architecture.  The basis of this architecture is still used in the modern Intel Pentium processors.  The X86 architecture is a CISC or Complex Instruction Set Computer, which means one instruction, can instruct the processor to execute several low-level operations like memory store or arithmetic operations like addition and subtraction.  The more modern X86 architecture uses a RISC or Reduced Instruction Set Computer.  By allowing one instruction to execute multiple tasks, speed and memory space is reduced.  The X86 has seven stages that fetch, decode, and execute instructions that it receives in its pipeline.  A pipeline is a way to break up instructions so that they may be executed faster.  The newer Pentium processors have 20 stage pipelines that allow it to run much faster than the 8086 or 8088 (http://en.wikipedia.org/wiki/X86 , 2004).

The hardware architecture of the 8086 processor can be broken down into several different categories. In the following sections, its architecture will be discussed in terms of its different system modes, address/data buses, control structure, and its internal architecture, just to name a few.  

Hardware Architecture Overview

The 8086 processor is manufactured using high-performance metal-oxide-semiconductor technology, also known as HMOS (Singh & Triebel, 1990). With over 29,000 different transistors, the processor runs at 10 MHz and uses a 16-bit data path (Intel, 2004b). The general layout of the processor is that 20 pins come out from each side of it (for a total of 40) and function as signals for address and data lines as well as other tasks such as interrupts and controls. In addition, one pin allows for the 8086 to run in either minimum or maximum system mode, which allows for the processor to run on a variety of systems (Singh & Triebel, 1990). The diagram below outlines the pin structure for the 8086 processor, which will be referenced more throughout the document.

[image: image1.jpg]ano [ vee

AD14 AD1S

AD13 A16/53

AD12 A17/S4

AD11 A18/S5.

AD10 A19/S6
ADY BHE/ST
AD8 MN/WX
AD7 RD

HOLD  (RG/GTO)
Aps 11 HLOA  (RG/GTT)
WR (tocK)
m/io 82)

a0z [J1s oA &)

BEN D)

aoo e ALE (@so0)
WA (@sn
TEST

M1

INTR

ok 22[7] Reaoy

GND 21[7] ResET




Figure 1.0 (Singh & Triebel, 1990)

Minimum System Mode

When pin number 33 (also known as the MN/MX pin) is set to the logical value of 1, the processor is in minimum mode. While in minimum mode, the processor is configured to optimally run on simple single-processor systems. Maximum mode should only be used in complex systems that feature multiple processors. For example, after adding a floating-point processor to the 8086, maximum mode should be set since the system now features more then one processor. Each mode changes the pin configuration of the processor, but there are still some pins that feature common signals in each configuration (Singh & Triebel, 1990).

Address/Data Bus Description

Although the 8086 uses a 16-bit wide architecture, the extended address bus actually uses 20-bits, which allow for a total of 1M-byte wide memory address space.  The first 16 bits are used by both the address and data bus and are therefore multiplexed. The next four bits are also multiplexed, but are used by the address bus and status signals. Multiplexing refers to the sending of two simultaneous signals along the same circuit. In order to separate these signals, external hardware is required. The address bus is responsible for sending address information to memory and I/O. The data bus carries the data for memory, I/O devices, and interrupts. Since both the data and the address buses share the same lines, they are labeled from AD0 through AD15 (see figure 1) (Singh & Triebel, 1990).

Control/Interrupt Signals

In order for external peripherals and other microprocessors to gain control of the system bus, the 8086 is equipped with control signals. Control signals tell when the bus needs to carry an address, what direction the data on the bus should go, and whether read or write data is on the bus. The 8086 has 2 request/grant channels that allow an external device to request and receive bus control. Each channel uses a single bidirectional pin, so that both the request and grant lines can share it. The interrupt control of the 8086 processor provides for user interrupt functions. When an interrupt has been received, an acknowledge signal is passed to an interrupt controller known as the 8259 A, which provides priority encoding. In addition, there is a CPU controller that allows the user to delay or stop the processor system. This ability is beneficial for creating slow memory systems or debugging systems (Bell et al., 1980).

Maximum System Mode

When the MN/MX pin number 33 is set to logical value of 0, the processor runs in maximum system mode. While in maximum mode, the processor is optimized to run on multiprocessor systems. A 3-bit status code is used to tell the processor what type of bus cycle is to be run. For example, if the status inputs are 0 0 1 respectively, then the processor knows that a read from I/O port is to be executed. Similarly if the status inputs are 0 1 0, then it knows to run a write to I/O port command. There are a total of 8 different commands that can be run by these codes. These status input codes are first sent to an external bus decoder known as the 8288 before they are sent back to the main processing unit on the 8086 (Singh & Triebel, 1990).

Bus Interface and Execution Units

The internal architecture of the 8086 is broken down into two different units that work in parallel – the bus interface unit (BIU) and the execution unit (EU) (website source). The BIU is responsible for computing addresses. Its primary job is to fetch instructions, handle operands from memory, and deal with I/O of data. The BIU has internal communication registers that are used for indirect addressing. It also includes four 16-bit segment registers (CS, DS, SS and ES), an instruction pointer, and a 6-byte stack to store the opcodes and data (Muller, 1997).

The execution unit is responsible for executing operations. It contains three temporary registers that are used to store the operations. In addition, four general registers, two stack pointers, and two index registers are connected to an internal data bus that is found inside the execution unit. These registers are also used to store operations. The EU works by fetching instructions from the BIU queue using a First-In-First-Out (FIFO) technique. It then decodes and executes these instructions using the arithmetic logic unit (Muller, 1997).

8086 Assembly Programming

Programming for an 8086 is done with a low level programming language that is known as assembly language. Assembly language requires that you use an assembler, similar to a compiler of a high level programming language. Each instruction in assembly language will generally correspond to one operation of the machine. When a program is assembled it is converted to machine code. Machine code is the lowest level language and the language that consists of binary bits that the machine can understand. (Jones, 1988)

Assemblers are not all the same neither are all the processors. In most cases an assembly language program should work with future processors, but not with past, due to architecture and assembler differences. There are still cases where it may not work with future processors because of the assembler too. There are two types of instructions that a program contains, the machine’s instructions but also the assembler directive. The assembler directive is what contains the assembler’s instruction on how to convert the program to machine language. These instructions are always completed by the assembler before hand and never passed on, so since each assembler is different, it might not work with the next processor if that assembler handles it differently. With the Intel x86 family, this is not supposed to be a problem. All of there assemblers are considered backward compatible. (Jones, 1988)

The basic idea for any programming language is to store a set of instructions for the computer to use, then fetch and execute these instructions. The program is read from top to bottom and each instruction is fetched from memory one at a time and then executed. Each instruction is tracked with a counter. It reads from the first to the last unless an operation is given that will manipulate the counter. (Jones, 1988)

8086 Instructions

There are six basic types of instructions: arithmetic, logic, shift, data transfer, control transfer, and processor control. Arithmetic instructions allow you to add and subtract, multiply and divide numbers. Logic instructions are the instructions in which result in a true or false value. These are logic operations such as AND and OR operators. Shift instructions allow you to shift the bits of a value one direction or another. Rotate shifts take a bit from one end and place it on the opposite end. A logic shift works similarly but when a bit is removed from one end or another, it is replaced with a zero on the opposite end. With an arithmetic shift a similar process is done except that when pushing a bit out of the right side it duplicates the most significant bit, otherwise it acts just like a logic shift. (Jones, 1988)

Data transfer instructions are responsible for moving data from one location to another. This is generally like a copy operation or could be data that is moved from some type of input to a register and then to an output. Control transfer instructions are instructions that make the program jump from one place in the instructions to another. This is called a jump but you could use a call function as well. A jump can allow you to move to another instruction by combining with a logic operation to create something like an if statement or a loop. The call lets you make subroutines which are like a jump to a bit of code that returns you back to the main instruction at its completion. Processor control instructions deal with giving the processor an instruction. A typical instruction is a NOP instruction. This instruction tells it to do nothing for a cycle. The processor could also be requested to halt until it receives an interrupt. (Jones, 1988)

It is also important to mention that sometimes logic and shift instructions are combined in what is called bit manipulation instructions, and that there is also a string manipulation instruction set that was not mentioned above. The set obviously deals with comparing, moving strings. (Mayer, 1988) Here are some instructions in their given sets:


Arithmetic:


adc
Add with carry flag


add
Add two numbers


cbw
Convert byte to word (signed)


cwd
Convert word to doubleword (signed)


cmp
Compare two operands


dec
Decrement by 1


div
Unsigned divide


idiv
Signed divide


imul
Signed multiply


in
Input (read) from port


inc
Increment by 1


mul
Unsigned multiply 


neg
Two's complement negate


sbb
Subtract with borrow


sub
Subtract two numbers


Logic:


and
Bitwise logical AND


not
One's complement negate


or
Bitwise logical OR


test
Bitwise logical compare


xor
Bitwise logical XOR


Shift:


sal
Bitwise arithmetic left shift (same as shl)


sar
Bitwise arithmetic right shift (signed)


shl
Bitwise left shift (same as sal)


shr
Bitwise right shift (unsigned)


Data Transfer:


lea
Load effective address offset


mov
Move data


out
Output (write) to port


pop
Pop word from stack


popf
Pop flags from stack


push
Push word onto stack


pushf
Push flags onto stack


Control Transfer:


call
Call procedure or function


int
Call to interrupt procedure


iret
Interrupt return


j??
Jump if ?? condition met


jmp
Unconditional jump


ret
Return from procedure or function


Processor Control:


cli
Clear interrupt flag (disable interrupts)


nop
No operation


sti
Set interrupt flag (enable interrupts)


 





(Fife, 2003a)

Registers

Since assembly language relies not only on its operation code, but also on registers, it is important to know what the registers do. Registers are storage areas located in the CPU and as a result are the fastest for storing information. The system memory can hold more information but has slower access time because it must travel along the bus. Generally you will find that individual date such as variables and addresses are stored in registers for quick temporary access, while the program will be stored in the systems memory. (Allyn, 2002)

[image: image2.png]Gentral Processing Unit (or GPU)

AX [_ Arithmetic & Logical Unit
an A | - (or ALU)
ss

i
= Oooo
BH BL overlan —
BP Dirsction.
Interupt
ox st Tracas
DS Auiliary Carry
Parity
DH DL Es Carry





Inside the CPU looks something like the figure above. The 8086 has 14 registers, 8 of which are general purpose, 4 are segment registers and the other 2 are special purpose registers. Each register has its own name as well. (Allyn, 2002)

· AX - accumulator register

· BX - base address register 

· CX - count register 

· DX - data register 

· SI - source index register

· DI - destination index register

· BP - base pointer

· SP - stack pointer

The general purpose registers are registers in which the programmer can assign information to be stored to. All the registers are 16 bits in size. The accumulator, base address, count and data registers are made up of two 8 bit registers. They are usually denoted with an “H” for the high register and an “L” for the low register of the pair. This results in AH and AL combining to make up one 16 bit AX register. The same goes for BH and BL making the BX register and so on. Although you can add whatever you want to the general purpose registers, they do have intended purposes. The data and address register hold data and addresses accordingly. An index registers purpose is supposed to be for holding an address to simplify the processing of a table of information. (Allyn, 2002)

· CS – code segment register

· DS – data segment register

· ES - extra segment register

· SS – stack segment register

The segment registers could also be registers in which you assigned data into, but generally this is not a good idea because they have very specific purposes. The segment registers work together with the general purpose registers to address memory locations that may be limited by one registers size. Take for instance if you wanted to access the memory location 12345h in hexadecimal. You would store 1230h in hexadecimal in the data segment register, and 0045h in the source index register. The CPU will multiply the segment address by 10h and add the general purpose register to it, and this gives you the physical address you were trying to access. This is an effective address. The BX, SI, and DI registers work with the DS register, and BP and SP work with the SS register to form an effective address. No other general purpose registers can form an effective address and although the BX can, BH and BL cannot. The segment register portion is referred to as the segment and the general purpose is the offset. The address is normally separated by a colon like this:

1230:0045         1230h * 10h + 0045h = 12345h

The special purpose registers are the last two. The instruction pointer register is a register that works with the code segment register. It is to point to the currently executing instruction and works as a counter. The Flags register is a special register where each bit can be raised to keep track of various parts of the processor.(Allyn, 2002)

Instruction Form

The form of an instruction is made up of op-code and operands. Op-code is the operations like those listed above. The operands are the values in which the op-code acts upon. Operands are things like registers, memory locations, or input and output ports. The form of an assembly operation looks like this: 


op-code   destination operand, source operand

The operation that you would like use is listed and then the operation you would like to have it act upon is listed next. If you are trying to move or copy something from one location to another, you would follow the operator with the destination operand, a comma, and the source operand. In other words, move here, from there. An example looks like this:

MOV AX,100

That operation moves the value 100 into the register AX. You can use from 0 to 3 operands in an instruction. The type of addressing in the example above included the data in the instruction and that is known as immediate addressing mode. You may also copy the contents of one register to another by specifying the source and destination operands as register names. That is referred to as register addressing mode. Another type of addressing is known as direct addressing mode. This mode is used when you need to specify the contents of a specific memory location and do not mean to use the value itself. This is accomplished by placing square brackets around the value you wish to access the memory location of.  An example looks like this:


MOV CL,[20H]

This is now an instruction to move the contents of memory location 20H to the register CL. Remember that if you want to move the actual value 20H, you would remove the brackets.(Uffenbeck,1997)

You also can assign variables a value. A variable is just a place in memory, so rather then having to specify 1230:0045 each time, you only need to use a variable name. To declare it, you must state the variable name, define the size, and then the value you wish to store. To define the size, you use one of the memory directives like DB for a byte (8bits) or DW for a word(16bits). A variable definition looks something like this: 


var  DB  7

The assembler is not case sensitive so don’t be confused by different examples of code. An instruction in all capitol letters performs the same function as that in all lower case. To define the memory location of a variable, you would have to use pointers (PTR) which is beyond the scope of this overview. Other functions that can be accomplished are data structures, such as arrays and strings. Understanding flow control and interrupts are also necessary, but beyond this descriptions scope. We have provided a basic overview of programming for the 8086. (Allyn, 2002)

Memory Interface

Now we will look at how the processor handles some of the external actions that are required for its operation like the memory. The 8086 can directly address up to 1M of memory due to its 20-bits of physical address space but all addresses in the program of the 8086 are 16-bit due to the registers and memory. Even though the address is 16-bits the memory is actually organized as 8-bit bytes instead of 16-bit words. 16-bit words though can be created by two consecutive memory locations. Since the 8086 uses 16 bits of data bus, two SRAM chips are required. One stores the even bytes and the other stores the odd. To access a 16 bit word though, the processor uses a new control signal to indicate what type of data it is, most importantly if it’s taking up the full 16 bits from both SRAM chips. (Uffenbeck, 1997)

The 8086 divides memory into 64Kb chunks called segments. Each of these segments starts at a paragraph address where the byte location is evenly divisible by 16. To access a byte or a word you would need to supply the segment address as well as the offset within that segment. An example of the syntax for the memory location is: F087:0046. The reasoning for segmenting the memory in this was to optimize the loading of full 64Kb chunks. (Singh & Triebel, 1990)

A computer must keep a very precise synchronization of its cycles and signals over its different lines. For the processor to reliably communicate with the memory the signals timing must provide a window of opportunity. The 8086 processor read and write bus cycle timing is divided into four clock cycles. This cycle starts by the 20 bit (16 for I/O) memory address being output. In the next cycle the processor activates the memory read or write lines. If it is chosen to read then the processor does nothing and the memory or I/O device supplies the data to be read. During the final cycle the processor takes the data and the read control signal is removed. But if it’s a write cycle instead, the data is held throughout the remainder of the bus cycle. This is then up to the external hardware to grab the data. (Uffenbeck, 1997)

Memory chips are rated by the time it takes to grab data from memory. This is calculated from the time it receives the address until the data is outputted. For things to flow properly the time needed for the processor to access the information needs to be greater than the memory access time. Since the data is flowing though buffers, this time should be a few nanoseconds. A typical 8086 has a 481ns access time while the memory of the period was from 200-300ns. (Uffenbeck, 1997)

So if the memory could not keep pace with the processor or actually could not out supply the processor with information, the window of opportunity would be missed. The processor will then try to get data from the lagging memory, which is most likely incorrect and will crash the system or abruptly hang. With these computers three solutions can be used first being; decrease the system clock frequency to slow the processor and provide the proper window. (Uffenbeck, 1997) This can be done by turning off the turbo switch often used on these PC’s. Another way to fix this problem is to get memory with faster access times. This will speed the system by alleviating the memory bottleneck and provide a proper window. Final way to remedy this is to program in WAIT states that will add extra time for a proper window. Adding a wait state increase the memory access time by 200ns but has to be supported by the memory subsystem. (Singh & Triebel, 1990)

Input / Output

There are three major types of I/O for the 8086 which are: programmed, Interrupt driven and DMA. We will look at how ports work and then at the different techniques of synchronizing them. I/O is how a computer communicates with the outside world. Each I/O port must have an address just as if it was a memory location. With the 8086’s the addresses are 16 bit long, allowing for 0000 through FFFH. To differentiate between memory locations and I/O space a processor signal is used. When it is high the address represents memory and when low it is for I/O locations. (Uffenbeck, 1997)

The 8086 has two basic types of I/O: IN and OUT, but there are a few variations of each depending on the type of data, the method of port specification and the type of specification of source port and destination data. Direct I/O supplies the port address in the instruction which must flow through the accumulator. To access the full range of ports, Indirect I/O is used and for these instructions, the DX register must be preloaded with the port address. Both indirect and direct I/O requires all data to pass through the accumulator but String I/O allows data to pass directly to or from a memory location. (Uffenbeck, 1997)

Programmed I/O

The first example is programmed I/O or polling. This is the simplest technique and basically involves the processor checking all the devices in a loop to see which device is requesting service. The processor continually checks all the devices registers looking for data to arrive so it can execute the program associated with that register. This requires little extra hardware and can be easily created or adjusted through the program in the processor. Unfortunately this process of constantly checking the registers wastes the processors cycles and proves not to be an efficient means of handling I/O in most computers. (Singh & Triebel, 1990)

Interrupts I/O

The next I/O technique we will look at is Interrupts. This type of I/O is much more efficient than programmed or polling I/O because it allows the processor to perform other tasks until devices request a service. The 8086 supports several types of interrupts including processor, software and hardware interrupts. The processor interrupt is when there is some type of error like a divide by zero fault, the software interrupt is a programmed instruction INT n which is used for example in accessing the BIOS and hardware interrupts are caused by external hardware which we label interrupt driven devices. Many times hardware interrupts are controlled by the 8259A Programmable Interrupt Controller (PIC). Hardware interrupts in the previous section used polling which essentially devotes all the processors resources to checking the BUSY/READY flag. The more logical method would be to have the device tell the processor when it has service to be done. (Uffenbeck, 1997)

The way the 8086’s hardware interrupts work is by checking the interrupt signal at the end of every instruction. If it is high, control is then passed to the interrupt service routine (ISR). The 8086 has two hardware interrupt pins labeled INTR and NMI. The NMI is a nonmaskable interrupt which means the processor must respond to it. It is used for critical functions like saving processor state when there are system problems. The other pin though is maskable by the IF flag. When the STI instruction is called interrupts are enable for this pin and when the CLI is called interrupts are disabled. Internal interrupts have the highest priority like in divide by zero instances. The processor will clear the IF flag so that no other interrupt will break the current service routine that has not completed. The INTR and NMI inputs are sampled by the processor at the end of the current instruction execution. NMI is rising-edge-triggered and internally synchronized. The INTR input is level-triggered and must be held high till the processor acknowledges. Having just two interrupts limits the processor to but the simplest systems and for this problem Intel developed the 8259A PIC. This PIC allows for expansion of the one INTR input pin allowing for better management of interrupt requests. Basically the PIC listens on I/O mapped ports 20H – 21H for any interrupt signals and then routes them to the INTR pin on the processor. The PIC must first be programmed with the interrupt type numbers as well as the operating mode and priority scheme. Now the PIC responds to interrupts IR0 – IR7 which are in a priority order. IR0 has the highest priority and other lower requests will not be acknowledged until the higher priority services have been finished. (Uffenbeck, 1997)

DMA I/O

The final I/O technique we will discuss is Direct Memory Access (DMA). With the previous I/O approaches the processor is required to be a middle man in the transfer of data. DMA synchronizes the peripheral with the memory to transfer the data without the bottleneck of the processor. When this is preformed by the DMA the processor goes into an idle mode while the DMA controller takes over the buses generating the memory and the I/O addresses. The 8086 handles this transfer of control by the Direct Memory Access Controller (DMAC). The DMAC issues a hold input to the processor which in turns finishes it current bus cycle and returns a HLDA signal to acknowledge the hold. This removes the processor completely from the I/O and memory. Now that the DMAC has control it provides the addresses and information for a direct transfer of information from the I/O to the memory bypassing it self even which provides a high rate of transfer. DMA proves to be the best choice due to its speed and response time but it does make the system much more complicated and expensive due to the need for the controller chip. (Uffenbeck, 1997)

Future Processors after 8088

After being established as a Fortune 500 company with the release of 8086 and 8088, Intel pushed on and kept releasing good microprocessors.  Right after the 8088, Intel released the Intel 286.  The 286 was placed into thousands of personal computers and used by the common person in 1982.  Shortly after the 286, Intel released the 386 in 1985 and then the 486 processor in 1989.  The 486 had to ability to run point and click oriented computing with graphical interfaces, instead of using command lines.  The 486 made it easier for almost anyone to own and use a computer.  The Pentium technology was first introduced to the world in 1993 by Intel.  Pentium technology was not only faster than anything else, but could incorporate speech, graphics, and better sound on a computer.  The Pentium processors continued to improve and then Intel introduced the Itanium processor in 2001.  Itanium technology is the first to feature 64 bits, which is able to handle high-end jobs like ecommerce and massive databases.  It is impossible to predict what Intel will come out with next, but it can only get better from here (Intel , 2004a).

Bibliography

(2004). “Wikipedia: The Free Encyclodpedia.”  URL: http://en.wikipedia.org/wiki/X86

Allyn, Barry (2002).   “8086 Assembler Tutorials” URL:     

http://www.ziplib.com/emu8086help/tutorials.html

Bell, R.K., Bell, W.D., Cooper, T.C., McFarland T.K. (1980). “The Big Three – Today’s

16-Bit Microprocessor.” IEEE, 126-129.

Fife, William (2003a).   “8086 Assembly Language” URL:     

http://www.ee.byu.edu/ee/class/ee425/base/labs/8086Assembly.html  

Fife, William (2003b).   “8086 Instruction Set” URL:     

http://www.ee.byu.edu/ee/class/ee425/base/labs/8086InstructionSet.html

Intel Corporation (2004a). “Intel Microprocessor Hall of Fame.”  URL:  


http://www.intel.com/intel/intelis/museum/exhibits/hist_micro/hof/

Intel Corporation (2004b). “Intel Microprocessor Quick Reference Guide” URL:


http://www.intel.com/pressroom/kits/quickreffam.htm

Jones, D. S. (1988).    Assembly Programming and the 8086 Microprocessor.   

New York: Oxford University Press. QA76.8.I292J66 1988; ISBN 0-19-853743-3.

Kanellos, Michael (2001). “Intel’s accidental revolution.”  URL: 


http://news.com.com/2009-1001_3-275806.html

Mayer, Joerg (1988).    Assembly Language Programming: 8086/8088,8087.   

USA: John Wiley & Sons Inc. QA76.73.A8M38 1988; ISBN 0-471-60504-2

Muller, Daniel (1997). “Intel 80x86 16-bit Microprocessors: The 8086 and 8088.” URL:


http://www.trotek.ec-lyon.fr/~muller/cours/8086/8086.html.en

Simmons, Steve (2003). “Great Processors of the Past and Present.”  URL:  
http://www3.sk.sympatico.ca/jbayko/cpu.html

Singh, A., Triebel, W. (1990).    The 8086 and 80286 Microprocessors. USA: 

Prentice-Hall, Inc. QA76.8.I292A98 1990; ISBN 0-13-245325-8   

Uffenbeck, John (1997).    Assembly The 80x86 Family Design, Programming, and 

Interfacing.   Upper Saddle River, New Jersey: Prentice-Hall Inc. QA76.8.I292 1997; ISBN 0-13-362955-4

PAGE  
13

