CS 350 - SRAM

A Detailed Discussion of SRAM

CS 350 Computer Organization

Spring 2002

Section #2

Niels Asmussen

Maggie Hamill

William Hunt

Table of Contents

 Page

Random Access Memory (RAM)………………………………………………..
3

Storage of RAM …………………………………………………………
3

Dynamic RAM …………………………………………………………………..
3

Static RAM ………………………………………………………………………
3

Synchronous………………………………………………………………
5

Asynchronous…………………………………………………………….
5

Reading from/ Writing to SRAM chips ………………………………….
5

Cache …………………………………………………………………………….
5

Associative cache ………………………………………………………..
6

Direct-Mapped cache …………………………………………………….
7

Set-Associative Cache ……………………………………………………
7

Sector-Mapped Cache ……………………………………………………
8

Future of SRAM ………………………………………………………………… 8

Formation of QDR ……………………………………………..………..
8

Benefits of QDR II ……………………………………………..………..
8

Uses ………………….…………………………………………..………
8

Available Future ...………………………………………………..………
8

Bibliography ……………………………………………………………..………
10

The acronym RAM stands for Random Access Memory, which simply means that data in this memory can be accessed specifically. This is opposed to accessing memory sequentially, where in order to reach certain data, you must first pass through all data sets before it. This is called serial access memory or SAM. The main difference between these two types of memory is the speed due to how data is accessed. Since RAM can obviously be accessed faster, it is used for the main memory and for memory cache, which speeds up access time to main memory. Before any data or instructions from secondary memory can be processed, they must first be copied into RAM, and assigned a memory address. However RAM only stores data temporarily. Another words it is volatile, when the computer is turned off any information in RAM is lost. The only exception to this is the CMOS setup chip, which is a RAM trip, but has its own battery that it uses for power when the computer is turned off.

Computers store RAM on a group of chips stored in a single physical unit called a SIMM (single inline memory module), which has several chips with either 32 or 72 pins on the edge connector. SIMMs can hold between 8 MB and 64 MB of RAM, and have a data path of 32 bits. Today DIMMs (dual inline memory modules) are much more widely used. The main difference is they have more pins (168) and they can store up to 256 MB of RAM, and have a data path of 64 bits.

RAM is actually a circuit that is made up or millions of capacitors and transistors. RAM sends data and control signals over the system bus. Computers use both static RAM (SRAM pronounced “ess-ram”) and dynamic RAM (DRAM pronounced “dee-ram”). Dynamic RAM is more common today, this is mainly because the chip is smaller, and it’s less expensive. A dynamic RAM chips consist of millions of transistors and capacitors that make up memory cells, which hold one bit of information. The capacitor holds a 0 or 1, and the transistor is like a switch that changes the capacitors information. The capacitor holds electrons, which leak out over time. When a capacitor is set to hold a 0, all the electrons are removed. Since all the electrons would leak out if the capacitor was set to 1, dynamic memory must constantly be recharged, which occurs thousands of times per second. This is done automatically, and is the reason dynamic RAM has its name. Dynamic means actively changing, and dynamic memory is actively refreshing by reading and re-writing the information, this takes time and causes significant delays in processing time.

Static RAM on the other hand is faster and also more expensive. This is because the chip consists of an array of Boolean gates which hold each bit of memory. The Boolean gates are a specific set and referred to as flip flops. A flip flop is a bi-stable circuit which holds either a 0 or a 1 and whose function is to remember the input value. Figure 1 contains a diagram of a flip flop. Because of the circuits simplicity it is extremely fast. This type of memory is called static, because it holds data until power is shut off. More transistors are needed to build flip flops then are need for DRAM chips, and therefore take up more real-estate on the chip, but there are no capacitors which lose charge so SRAM does not need to be refreshed. This is how it becomes much faster to access. However since more chip real-estate is used for the gates, there is less memory on static chips then on dynamic chips; therefore the same amount of static memory is considerably more expensive.

[image: image1.png]
Figure 1 – Flip Flop using two NAND gates

SRAM may be on the mother board, individual chips or on a COAST (cache on a stick, or memory modules). There are different varieties of SRAM memory, which can be installed in increments of 64KB, 128KB, 256KB, or 512KB. The earlier SRAM chips came in DIPs (dual inline package) of 20 pins or more. So many pins were need because a pin is needed for data out, data in, each address signal, ground, power and some control information. Figure 2 shows a diagram of SRAM pin configuration.

[image: image2.png]

Figure 2 - SRAM Pin Configuration (Note: the output enable pin is not shown here, because most modern SRAM’s don’t have one)

SRAM uses two different methods to coordinate how and when control signals and data are sent or read. These two methods are known as synchronous and asynchronous. Synchronous SRAM synchronizes its control signals with a clock signal, which allows for memory cache to run in step with CPU. Synchronous RAM can also be split into two categories; burst or pipeline burst. Pipeline burst is less expensive and only slightly slower because it uses more clock cycles per data transfer. Burst is quicker because it doesn’t send the addresses of all the data, but rather only the first address and then all the data without interruption. Both types of synchronous RAM are faster and more expensive then asynchronous RAM. Asynchronous RAM does not run in synch with the CPU. It looks up the address sent by the CPU and then returns the data within one clock cycle. It can not process as much data in one request and is therefore much slower. Systems can be designed to use synchronous RAM, asynchronous RAM or both but not at the same time.

Now let’s step through reading and writing to a SRAM chip. To read 1 bit, the address of the bit must be placed on the address pins by way of the address bus. CS (chips select, Figure 2) must be activate to select the SRAM chip. Chip select is the pin that specifies exactly which SRAM chip you wish to work with, this is because there maybe more then one SRAM chip attached to the address and data buses. The output enable pin’s (which is missing from the diagram please just bare with us and pretending its there, this is an old picture) basic function is to let SRAM know it is being read from and not written to. And after that is done that data is on the Data Out pin and moves on to the data bus.

To write 1 bit the address of the memory cell that you want to write to must be placed on the address pins by way of the address bus. The 1 bit that is going to be written must be placed on the data pin by way of the data bus. Keep in mind for this to work the output enable pin must be inactive. Once again chip select must select which SRAM to use. Finally write enable must be activated, so that the chip knows it is being written to and not read from. And now the memory cell you selected contains the data that was put on the data in pin.

The speed of processors today is so fast that they can no longer retrieve information as they need it from main memory, which is made up of DRAM as discussed earlier. While DRAM supports access times of about 60 nanoseconds, SRAM can give access times as low as 10 nanoseconds (according to webopedia.lycos.com).

As you can see reading from and writing to static RAM is quite fast. Since speed is the main concern of cache, static RAM is used to create cache. What, though, is cache?

Within every computer is a memory subsystem, called the memory hierarchy. Basically, the information starts out on the relatively slow hard drive. When in use, it moves to the main memory (typically made up of a form of DRAM). Although significantly faster than the hard drive, main memory cannot provide information quickly enough to the processor. To make up for this bottleneck, anything that is read from the main memory or written there is also placed into the cache. Most computers today have a Level 1 cache that is located on the chip itself, and slower Level cache of a larger size located elsewhere on the motherboard.

You may associate the term cache with your internet browser. If a website is visited often, the internet browser, such as Microsoft Internet Explorer, will store the html and image files that are associated with that webpage onto a certain spot on the hard drive. The same concept originally began with the idea of caching for the microprocessor. Many programs use the same code repeatedly during use, and to go into main memory each time that code was called would take up unnecessary time. By having the fast SRAM for cache, the processor can get the information it needs much more easily and efficiently.

Each cache is composed of cache entries. The entries have two parts; a tag (often the address of the data) and a little cache memory. These parts of cache are maintained by two subsystems, and address or tag system, and a memory system (See Figure 3). When the processor needs data, it will first check in the cache to see if the addressing tag is present. There are different ways to map the cache which will be discussed later. If the desired data is not already located in the cache, it will be called from main memory and placed there. This is called a “cache-miss.” Along with the desired data, and entire cache line will be pulled from main memory. Common logic says that if one piece of data will be used, so will other pieces of data that are located near it. By pulling a cache line, the data near the requested address will also be placed into cache. If the desired data is located in the cache, a “hit” has occurred. The “hit-rate” of the cache is very important when considering the design and purpose of the cache, and it is the mapping technique that is used that determines the hit rate. Four different mapping techniques along with their advantages and disadvantages are discussed below.

[image: image3.png]
Figure 3 – A diagram of cache

The first type of cache mapping that will be discussed is called fully associative. In this type of cache, data from any address can be stored in any location on the cache. This differs from other types of cache mapping, such as direct mapping, because that type limits how the data is distributed within the cache. As a result of the fact that the data that is pulled from anywhere and can be placed anywhere in the cache, there must be a method to keep track of this. To implement this, every time something is entered into the cache, a tag must be used to identify the data that is at that location. The easiest way to make sure that the right data will be retrieved when it needs to be is to use the entire address of the data as the tag. This is the main reason that associative mapping is considered expensive relative to other methods.

Although this may seem to be a good way to utilize the entire cache by not limiting where things are stored, there are some major inefficiencies to it. In order to find out if the search through a cache produces a “hit” or a “miss,” every single tag must be compared to the address that is being searched for. Cache-conflict, however, is much less likely to occur with fully associative mapping than it is with other types of mapping because the data is not restricted to certain cache-lines, as it is with other types of cache mapping. However, other inefficiencies also occur when it comes to storing data in the cache. Algorithms must be created and stored that will decide where to distribute the data that is entered into the cache, so that the data will be evenly distributed.

A second type of cache mapping that is often used is called direct-mapped caching. The distinct advantage to this system is that it is much simpler than associative methods, including both full and set (discussed later). Instead of placing things into the cache almost in a random way like associative mapping, each piece of data can only go to one location in the cache. Each memory location can use only one cache-line, and it shares that line with many other addresses. However, only once piece of data can use this line. The fact that addresses are limited in where their data can be in the cache is the limiting factor in directly mapped cached. But because of the simple design, the searching algorithm is much simpler. Only the cache location that is associated with the desired memory address has to be checked. Although searching through the cache takes less time with directly mapped cache, the hit-miss ratio is worse than that of associatively mapped cache. This is a result of the fact that a memory location must be flushed if another address is called that happens to have the same cache location mapped to it, which happens more often in directly mapped cache than in other methods. A final disadvantage to directly mapped cache is that cache conflict can occur quite often. If a program needs data piece A, it will call it into cache for use. If data piece B is then called, but maps to the same cache location as A, a miss occurs. If A is needed once again, another miss occurs. Examples like this are most likely to happen in multi-processor systems.

The next cache mapping technique, called “n-way set associative mapping,” which is a compromise of the complexity of the fully associative cache and speed of directly mapped cache. What this method does is divide the cache up into “n” (typically a factor of two, often two or four) cache lines. Visualize this:

	1
	
	
	
	

	2
	
	
	
	

	3
	
	
	
	

The rows going across in this “cache” are called sets. The columns are the different cache lines that are used to store the data and tags. In directly mapped cache, there is basically one column besides the set labeling column used in the example (the column with 1, 2, and 3 in it). However, in set associative mapping, the cache conflicts are reduced greatly by increasing the number of columns. Each memory location is mapped to one cache “set.” If two desired memory locations are mapped to the same cache set, they can both still be placed in the cache by moving over to a different column, or cache line. The great thing about this mix of direct mapping and associative mapping is that the search algorithm is simple. First the cache set must be determined for the requested memory address, and then the tag across “n” cache lines will be compared. This type of mapping is often used in processor Level 1 cache.

A fourth type of cache organization is sector-mapping. What this does is divide up the memory and the cache into x sectors and n lines. Each sector has its own tag. When a piece of data is requested, the cache sector is first checked for the tag. If there is a match, then the tag of the line is checked for validity. If there is a match, the data is retrieved.

Standardization has long been an important principle of the computer industry to ensure competition, more reliable supplies, and ease of use for consumers. Many of the most successful hardware protocols were developed and opened to the entire industry free of any proprietary aspects. Memory is no exception, and the most popular type of SRAM, QDR, or Quad Data Rate, is currently being developed by a group of six of the top memory companies, (Cypress, Hitachi, IDT, Micron, NEC, and Samsung). QDR was founded in 1999, and their latest SRAM product, QDR II, has just received approval from JEDEC, the standardizing body for entire the solid state electronics field.

The QDR group is currently in the beginning phases of increasing their QDR II production to take over for its predecessor, QDR I, having released a sample of the memory at the end of 2001. QDR II has many advantages over QDR I delivering a current top data transfer rate of 48GB/s at 333 MHz using just 1.8V versus QDR I running at 2.5V. The density of the QDR II chips has doubled, allowing them to put twice the amount of memory on the same chip. This has all been accomplished without changing the pinout of the chips at all, making QDR II compatible with the older QDR I, a feature that is greatly appreciated by both consumers and manufacturers.

SRAM has some rather specific uses in the computing industry, due to its high cost and for the most part unnecessarily high speed it is a specialty item, often used as cache in products which are able to make use of its speed. SRAM is used on high end machines such as routers and switches, where data is being transferred at incredibly high speeds and requires fast memory. There are PCMCIA cards making use of SRAM to store their data, boasting high speed, these devices come with only 256 KB to 8 MB of memory and need a constant supply of electricity to keep the data stored in the memory. There are two available batteries to make it possible to change one without losing any data. The use of these devices seems limited, as most people don’t need up to 8MB of extremely high speed memory in a PCMCIA card. SRAM is currently being used as a sort of cache on DRAM chips in order to increase their speed. This provides the user with a noticeable speed boost, without increasing the price too much. Using SRAM for all of the memory would obviously be too expensive for most people, and a completely unnecessary speed boost. SRAM being the fastest memory type available is the logical choice for the cache found on CPU’s since they’re going to need some extremely fast memory that is able to run at the same speed of the CPU. SRAM is also found on interface cards, from high performance networking cards to high quality graphics cards. SRAM is generally only used on higher quality hardware, providing an often expensive speed increase.

The future of SRAM isn’t entirely clear, it will obviously have speed and density increases, though the exact direction is hard to determine. Computer companies often want to keep their future products somewhat secretive, leaking only certain details to try and keep the public interested. Intel just laid claim the smallest SRAM memory cell, cramming an impressive 52MB, utilizing 330 million transistors, onto a chip only 109 square millimeters (smaller than a dime) in size. As is shown in the following photograph:

[image: image4.jpg]
The Intel press release says nothing about the speed of this SRAM chip, it does say that this research is being used to further SRAM for use as CPU cache, so one can assume that the speed is relatively high. Intel is keeping information about the 90-nm CMOS fabrication process secret, especially how it created transistor gate lengths below 50 nm. As impressive as this technology is, one must keep in mind that the price of an 8MB SRAM upgrade costs around $70 versus $85 for 256 MB of the fastest available (PC3200) DDR SDRAM. These prices go to show just how much of a luxury item SRAM actually is. SRAM is also entirely unnecessary for almost every consumer, and is therefore only needed on specialty hardware.

Bibliographic Citations
Stokes, John (8/2000) “RAM Guide Part III: DDR DRAM and RAMBUS.” URL: http://www.arstechnica.com/paedia/r/ram_guide/ram_guide.part3-1.html
Stokes, John (7/2000) “RAM Guide Part II: Asynchronous and Synchronous DRAM.” URL: http://www.arstechnica.com/paedia/r/ram_guide/ram_guide.part2-1.html
Stokes, John (7/2000 “RAM Guide Part I: DRAM and SRAM Basics.” URL: http://www.arstechnica.com/paedia/r/ram_guide/ram_guide.part1-1.html
Andrews, Jean (2000) A+ Guide to Managing and Maintaining Your PC Third Edition Course Technology Cambridge, MA ISBN 0-619-00038-4

INT Media Group, Incorporated (2002). “SRAM.” URL: http://webopedia.lycos.com/TERM/S/SRAM.html)

Tyson, Jeff (1998-2002). “How RAM Works.” URL: http://www.howstuffworks.com/ram.htm
Howe, Denis (1997). "cache (Free Online Computing Dictionary)." URL: http://burks.brighton.ac.uk/burks/foldoc/11/16.htm)

Kozierok, Charles (2001). "Cache Mapping and Associativity." URL: http://www.pcguide.com/ref/mbsys/cache/funcMapping-c.html

Mazzucco, Paul (2001). "The Fundamentals of Cache." URL: http://www.systemlogic.net/articles/00/10/cache/
QDR (2002). “QDR” URL:

http://www.qdrsram.com/

Intel (2002). “Intel Builds World’s First One Square Micron SRAM Cell” URL:

http://www.intel.com/pressroom/archive/releases/20020312tech.htm

Lineback, Robert (2002). “Intel Claims Smallest SRAM Cell With 90-nm Process, Preps Technology for 2003 Production” URL:

http://www.siliconstrategies.com/story/OEG20020312S0021

(2002). “Pricewatch” URL:

http://www.pricewatch.com/

Note: We also used notes taken in Dr. Abzug’s CS350 Class

Page 2 of 10

