Special Instructions

 For

Graphics and Multi-Media

CS 350

Computer Organization

Spring 2002

Section 2

Alexander Blood

David Waterman

Table of Contents

1. Introduction

2. Multimedia Instructions:
3. Single Input Multi Data (SIMD)

3. Intel Corp’s MMX

4. AMD’s 3DNow! and Advanced 3DNow!

5. Intel’s SSE (MMX2

6. Consumer Chip Releases (AMD, Intel)

7. Glossary

8. Bibliography

Introduction

In today’s modern world, computers have become an integral part of life. Information and communication were never this cheap or easy. Consumer computers have much processing power, passing the two-gigahertz barrier. Life was not always this way, however. It has taken several decades for computers to evolve to the level they are at now. Several technologies have come into development, some successful and some failures. One such technology that was successful and improved upon was specialized multimedia instructions. These were a specific set of new instructions created to facilitate multimedia calculations. Researchers found that multimedia calculations such as pixel and sound frame computations were several series of similar yet simple calculations. This development was the foundation for an exciting new era in PC consumer processors.

SIMD

Now that they had established the problem, the researchers had to find a quick and efficient solution. Their answer however wasn’t all that original. They took a page out of super- computer’s advanced design. They decided to implement SIMD to solve their problem. SIMD, (Single Instruction Stream, Multiple Data Stream,) was a good choice. Instead of using SISD, (Single Instruction Stream, Single Data Stream,) which was native to the Intel processor architecture, they converted to SIMD, which processed multiple data streams with the same instructions.

“SIMD architectures are essential in the parallel world of computers. Their ability to manipulate large vectors and matrices in minimal time has created a phenomenal demand in such areas as weather data and cancer radiation research. The power behind this type of architecture can be seen when the number of processor elements is equivalent to the size of your vector. In this situation, component- wise addition and multiplication of vector elements can be done simultaneously. Even when the size of the vector is larger than the number of processors elements available, the speedup, compared to a sequential algorithm, is immense.”(University of Colorado at Denver)
[image: image1.emf]
Figure 1. Illustrates the differences between SISD and SIMD.

To make this all work, they also had to create a new set of instructions. They developed MMX, the first new set of multimedia instructions for the consumer PC market.

MMX

Introduction
Intel developed MMX technology in order to improve the performance of their processors in multimedia applications. The MMX technology added 57 new instructions, 8 64-bit registers, and new 64-bit data types. This technology was based on the theory of SIMD processing. This aided in applications that performed single calculations on numerous data. MMX supports parallel operations on byte, word, double- word, and quad- word elements. (Programmer’s Reference Manual) It improves performance when performing recurring operations on sets of data. 8 packed-byte operations can be performed at once, which are usually used for image data, and 4 packed-word operations can be performed at once, which are usually used for audio data.

Data Types

MMX introduced new data types, new registers, and new instructions to the Intel Architecture CPUs. Because of the 64-bit registers, MMX allowed quad- word data types to be used. These registers also allowed use of packed double- word data types consisting of 2 32-bit data, packed word data types consisting of 4 16-bit data, or packed byte data types consisting of 8 8-bit data. This is illustrated in Figure 1. This versatility was one of the advantages of MMX. It was not intended to perform calculations of floating-point elements, however, so there is no support for floating-point data types or storage.

[image: image2.png]
Figure 2. Shows the possible arrangement of different data types within a register

Registers

The eight new registers available were general-purpose registers, but they were actually aliased over the floating-point registers, so that it was unsafe to perform MMX and floating-point operations at the same time. Access to the registers was direct using the register names MM0-MM7, but they could not address memory. This required using the standard integer registers.

Instructions

The new instructions allowed parallel operations on all the elements of a packed data type, signed or unsigned. The new instructions also introduced a new type of arithmetic to the Intel Architecture: saturation arithmetic. In saturation arithmetic, results that overflow and underflow are clipped at the maximum or minimum value for that data type. Examples are shown in Table 1.

Table 1. (Programmer’s Reference Manual)

	Data Range Limits for Saturation Arithmetic

	
	Lower Limit
	Upper Limit

	Signed Byte
	-128
	127

	Unsigned Byte
	0
	255

	Signed Word
	-32,768
	32,767

	Unsigned Word
	0
	65,535

The new instructions were broken down into the following groups:

· Arithmetic

· Comparison

· Conversion

· Logical

· Shift

· Data Transfer

· Empty MMX State (EMMS)

The arithmetic instructions are self-explanatory; they allow simple arithmetic operations to be performed on a packed data type. They included packed add (PADD), packed subtract (PSUB), packed add and subtract with saturation (PADDS and PSUBS), and packed add and subtract unsigned with saturation (PADDUS and PSUBUS). Comparison instructions are also self-explanatory; packed compare for equal (PCMPEQ) and packed compare for greater-than (PCMPGT). The conversion instructions allow data types to be converted from packed to unpacked, and from unpacked to packed. The logical instructions were packed bitwise logical AND, OR, and XOR. The shift instructions were packed logical shift left and right, and packed arithmetic shift right. The data transfer instructions move data from either integer registers or from memory into the MMX registers. The empty MMX state (EMMS) instruction was required to be used at the end of an MMX routine before executing a floating-point routine so that it could clear the shared registers.

Summary

MMX added 8 64-bit registers and 57 new instructions to the Intel Architecture. It also added support for packed data types, allowing one register to hold either: one 64-bit element, two 32-bit elements, four 16-bit elements, or eight 8-bit elements. The registers were shared with the floating-point unit, and so not only could MMX and floating-point operations not be executed at the same time, the registers had to be flushed when switching from one to the other. This was very costly and inefficient, but it allowed the designers to introduce MMX without creating new CPU states, so it was transparent to the operating system. (Stokes) MMX brought with it the ability to perform operations in parallel on packed data types, but it did not support floating-point data types. This meant that while MMX was useful for image and sound processing, it was less useful for 3-dimensional calculations, where floating-point data is common.

3DNow! And Advanced 3DNow!

Introduction

AMD responded to Intel’s development of MMX with its own SIMD implementation, 3DNow!, that not only included all the MMX instructions, but also added support for floating-point data types. On top of the 57 MMX instructions, 3DNow! added 21 unique floating-point instructions, for a total of 78 instructions.

Instructions

The 21 new instructions that AMD added to the 57 MMX instructions include:

· SIMD floating-point operations

· SIMD integer operations

· Data perfecting

· Fast MMX-to-floating point switching

To improve playback of video, there is an instruction that facilitates pixel-motion compensation. Because of the nature of SIMD, there is a need to process large sets of data. Loading this data from memory into registers can take time and often wastes processor cycles, so AMD also included PREFETCH, an instruction that allows data perfecting. This is the process of loading data from main memory into a register before it is needed. To improve the time it takes to switch between MMX and floating-point operations that was a drawback in Intel’s initial MMX implementation, the instruction FEMMS (fast entry/exit multimedia state) was created. Together these 21 new instructions compensate for most of the major shortcomings of MMX.

Registers

To maintain compatibility with MMX, AMD mapped eight 64-bit registers for the 3DNow!/MMX unit to the floating-point registers. This was the same thing done by Intel, so that switching between floating-point and MMX calculations did not require switching CPU states. This prevented the need for operating system updates.

Data Types

3DNow! supports the same data types as MMX: byte, word, double- word, and quad- word. On top of that it also adds support for floating point numbers, following IEEE standards for single-precision floating-point data types. This is for a 32-bit, single precision, floating-point double- word: from the left, the first bit is the sign bit, the next 8 bits for the exponent in excess-128 form, and the last 22 bits for the significant. The value of a float as stored in 3DNow! is:

value = -1(sign) * 2(exponent-127) * (1.significand)

3DNow! also supports four-way single precision (128-bit) floating-point calculations, however to do so it breaks the calculation down into to 64-bit calculations, and then combines the results. The two 64-bit calculations are done in parallel on separate SIMD execution units, which are independent of each other. Because of 3DNow!’s inability to natively execute 128-bit calculations, there are no 128-bit instructions or registers, which means greater simplicity in both software and hardware, at the cost performance.

Advanced 3DNow!

When AMD designed the Athlon line of processors, they updated their 3DNow! instruction set to include 5 new instructions. These were intended to be used for digital signal processing, which is used for video and audio encoding and decoding. This technology is used when playing movies and sound files, but also by software-based modems and other communications devices. The new instructions are:

· Packed floating-point to integer word conversion with sign extend

· Packed floating-point negative accumulate

· Packed floating-point mixed positive-negative accumulate

· Packed integer word to floating-point conversion

· Packed swap double- word

These instructions are explained in depth in the AMD technical document “AMD Extensions to the 3DNow! and MMX Instruction Sets,” available at the URL:

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/22466.pdf

Summary

AMD created 3DNow! in an attempt to not only compete with Intel’s MMX, but also to improve upon its shortcomings. It has many of the same features as MMX, such as eight 64-bit registers that are shared with floating-point calculations, but it also adds the support for SIMD floating-point calculations. This results in a great improvement to software that does many floating-point operations, such as 3-dimensional rendering. However, because of 3DNow!’s incorporation of MMX, it also has many of the same drawbacks, such as shared registers. But AMD improved on this as well, but providing an instruction to quickly prepare the registers when switching from MMX to floating-point calculations.

SSE (MMX2/KNI)

Registers

Intel attempted to 128-bit SIMD floating-point computation to their CPU architecture with SSE. SSE was only an addition to MMX technology, and CPUs featuring SSE still have the same original MMX hardware as well. To achieve this they added eight 128-bit registers in addition to the eight 64-bit registers used for MMX and general floating-point calculations. Including these new registers however meant that switching from regular or MMX execution to SSE execution meant switching the CPU state as well, which meant an operating system update.

Floating-Point Calculations

As with 3DNow!, even though it has 128-bit registers, SSE cannot do true 128-bit operations. 128-bit instructions are broken down to two 64-bit instructions and executed either in parallel or in series. This was done to simplify the CPU hardware, as the Intel Architecture at the time included 64-bit data paths but not 128-bit data paths. Problems can occur when a 128-bit operation is split into two 64-bit operations, but one of them throws an exception after the other operation has already completed. To prevent the bad result from corrupting the good result, SSE has a special hardware check. This check holds the first operation and does not allow it to complete until the second operation is ready. This has the potential to cause slow downs because if there is an exception thrown by one of the operations, it creates twice the delay because the unit that is already done is not allowed to proceed until the other unit is ready. All of these restrictions are for floating-point operations only, however. Integer calculations are still done by the original MMX instructions, restricted to 64-bits and shared registers.

Summary

Although SSE was added by Intel to improve performance by including the ability to perform SIMD floating-point operations, it is still hampered by the problems of the original MMX technology. Intel gave in and created eight new 128-bit registers for SSE, requiring an operating system update, but there is still the delay when switching from MMX to floating-point commands because the original MMX portion still has shared registers. SSE is also unable to do true 128-bit floating-point calculations, its main goal. The CPU must split up 128-bit operations into two 64-bit operations and perform them separately. Despite all of these problems, SSE is still a very beneficial technology when running programs that deal with large sets of floating-point numbers, as it allows the CPU to perform these operations in parallel instead of sequentially.

Consumer Processors Taking Advantage of Multimedia Instructions

Intel

• MMX:

• Pentium MMX

• Pentium Pro

• Pentium II

• Celeron

• SSE:

• Pentium III

• Pentium IV

• Celeron 2

AMD

• 3DNow!

• K6-2

• K6-3

• Advanced 3DNow!

• Athlon

• Duron

Glossary

3DNow!: “3DNow! is an advanced instruction set developed by AMD (Advanced Micro Devices). It is composed of instructions which support SIMD floating point, DSP, and integer operations.” (3DNow.net) Adds 21 additional instructions to MMX.

Advanced 3DNow!: An improved version of the original 3DNow!, with 24 additional instructions.

MMX: Intel Corp’s original set of 57 multimedia Instructions.

MIMD: (Multiple Instruction Stream, Multiple Data Stream,)

SIMD: (Single Instruction Stream, Multiple Data Stream,)

SISD: (Single Instruction Stream, Single Data Stream,)

SSE: (MMX2) Intel Corp’s advanced instruction set; (includes an additional 8 128 bit registers for floating point instructions.

Bibliography
3DNow.net (1998- 1999) “The Unofficial 3DNow!™ FAQ v1.21” URL

http://66.96.254.245/faq.htm

Advanced Micro Devices, Inc (2000). “3DNow! Technology Manual.” URL:

http://www.amd.com/us-en/assets/content_type/

white_papers_and_tech_docs/21928.pdf

Intel Corp. (1996). “MMX Technology: Programmer’s Reference Manual.” URL:

http://cedar.intel.com/cgi-bin/ids.dll/content/content.jsp?cntKey=

Legacy::irtmp_PRM_10660&cntType=IDS_EDITORIAL&catCode=BBU

Stokes, Jon (2000). “3 ½ SIMD Architectures.” URL:

http://www.arstechnica.com/cpu/1q00/simd/simd-1.html
University of Colorado at Denver(1997) “SIMD Architectures” URL

http://carbon.cudenver.edu/~galaghba/simd.html

3DNow!, Advanced 3DNow!, Athlon, and Duron, are trademarks of Advanced Micro Devices, Inc.

Pentium, MMX, SSE, Pentium II, Pentium III, Pentium IV, and Celeron are trademarks of Intel Corporation.

� EMBED Photoshop.Image.6 \s ���

[image: image3.emf]_1081104600.psd

