VAX Computer Architecture

Michael Collins

CS 350 – Computer Organization (Section 1)

Spring 2002

Table of Contents

	Background
	3, 4

	Data Types
	5, 6

	Addressing
	7

	Processor State
	8

	Memory
	9

	Timeline
	10, 11

	Bibliography
	12

Background

The Virtual Address Extension (VAX) architecture was first introduced in 1975 by Digital Equipment Corporation (DEC), located in Maynard, Massachusetts. Two engineers from MIT named Ken Olsen, and Harlan Anderson founded the company itself in 1958 and built various successful architectures before starting up the VAX project.

 The VAX project was begun due to the lack of virtual addresses provided by the PDP-11, which only had a 16-bit architecture, forcing programmers to use rather difficult procedures to use the limited space effectively. From the beginning, the plans for the VAX architecture were that the architecture would be 32-bit, allowing for over 4-million bytes of address space – more than enough for any product until 1997 (per DEC estimations).

After three years of work, DEC finally released it’s first VAX machine, the VAX-11/780. Since the release of this first VAX, there have been over 100,000 VAX system installations all around the world, making it one of the most popular computer architectures in history.

Another innovation besides the 32-bit architecture was the fact that the architecture was to remain constant among all systems, making software and hardware development fairly easy, they simply had to meet certain specifications and the product would work correctly with any VAX-based system.

Since the VAX was to take over the market share of the previous PDP-11 and the PDP-11 was still widely used commercially, DEC set out to also make the VAX architecture very compatible to that of the PDP. To maintain compatibility DEC did the following for the VAX: used the same basic instruction set as the PDP-11 and added a few more to make the VAX more robust; used the same basic addressing modes, but added more; shared byte addressing with the PDP-11; had similar I/O and interrupt structures to the PDP-11; and had identical data formats. The result was a good one and existing products from the PDP-11 were highly compatible with the VAX.

Throughout the VAX architecture lifespan, the following were the three main operating systems in use: VMS, DEC’s own product that took advantage of almost all of VAX’s features; ULTRIX, a UNIX based system that reports have shown some uptimes of well over a full year; and ELN, a system which was to be used for the development of real-time applications.

Since categorizing the performance of the systems was rather difficult, DEC developed a unit called the VAX Unit of Performance (VUP), which was the performance of a system based upon a rating of 1.0 for the VAX-11/780.

Development of VAX systems ended in 1997 and sales ended in 1999 as Compaq bought DEC and turned its efforts to the development of the Alpha computer architecture. Although VAX systems are rather antiquated by modern standards, there are still many in

Background (cont.)

use today around the world and the architecture continues to hold an avid fan-base among collectors. For instance, some fans of the system have entire rooms filled with the various models, others have converted them into wet bars, and even more still use and tinker with them just for fun.

Data Types

The following are the sixteen data types supported by the VAX architecture, it is to be noted by (*) that certain data types need not be implemented in a system:

· Byte: the basic unit in the VAX system; consists of 8 bits in a row, numbered (0-7); can be read as either a two’s complement integer or an unsigned integer:

· Two’s complement: bits (0-6) are bits of increasing significance; (7) is the sign bit; values are in the range –128 through 127.

· Unsigned: bits (0-7) are bits of increasing significance; values are in the range 0 through 255.

· Word: two bytes in a row; bits numbered (0-15); can be read as either a two’s complement integer or an unsigned integer:

· Two’s complement: bits (0-14) are bits of increasing significance; (15) is the sign bit; values are in the range –32,768 through 32,767.

· Unsigned: bits (0-15) are bits of increasing significance; values are in the range 0 through 65,535.

· Longword: four bytes in a row; bits numbered (0-31); can be read as either a two’s complement integer or an unsigned integer:

· Two’s complement: bits (0-30) are bits of increasing significance; (31) is the sign bit; values are in the range –2,147,483,648 through 2,147,483,647.

· Unsigned: bits (0-31) are bits of increasing significance; values are in the range 0 through 4,294,967,295.

· Quadword: eight bytes in a row; bits numbered (0-63); can only be read as a two’s complement integer:

· Bits (0-62) are bits of increasing significance; (63) is the sign bit; values are in the range –263 through 263-1.

· *Octaword: sixteen bytes in a row; bits labeled (0-127); can only be read as a tow’s complement integer:

· Bits (0-126) are bits of increasing significance; (127) is the sign bit; values are in the range –2127 through 2127-1.

· *F_floating (single precision): four bytes in a row; bits labeled (0-31); (15) is the sign bit; bits (7-14) are an excess 128 binary exponent; bits (0-6) and (16-31) are a normalized 24-bit fraction; value is in the approximate range .29e38 through 1.7e38; precision is approximately seven decimal digits.

· *D_floating (double precision): eight bytes in a row; bits labeled (0-63); identical to F_floating except for an additional 32 low significance fraction bits; approximate range of values is identical to that of F_floating; precision is approximately sixteen decimal digits.

· *G_floating (extended-range double precision): eight bytes in a row; bits labeled (0-63); bit (15) is the sign bit; bits (4-14) are an excess 1,024 binary exponent; bits (0-3) and (16-63) are a normalized 53-bit fraction; values are in the approximate range .56e(-308) through .9e308; precision is approximately fifteen decimal digits.

Data Types (cont.)

· *H_floating: sixteen bytes in a row; bits labeled (0-127); bit (15) is the sign bit; bits (0-14) are an excess 16,384 binary exponent; bits (16-127) are a normalized 113-bit fraction; value is in the approximate range .84e(-4932) through .59e4932; precision is approximately 33 decimal digits.

· Variable-Length Bit Field: can range anywhere between zero and 32 bits in length; specified by three attributes (address of a byte, bit position, size of field); position is in the range –231 through 231-1.

· Absolute Queues: circular, doubly linked-list; links are longwords pointing to the address of the next or previous entry; backward link of head points to tail, forward link of tail points to head.

· Self-Relative Queues: uses displacements from queue entries as links.
· Character String: sequence of bytes in memory; specified by two attributes (address of first byte, length [0 through 65,535]).
· *Trailing Numeric String: sequence of bytes in memory; higher addresses = less significant; specified by two attributes (address of the first byte, length [0 through 31]); all bytes except for least significant must contain an ASCII decimal digit character (0-9), the least significant byte represents the sign as well; input can be any encoding, but output is always in the normal form; numeric string instructions allow any encoding to be used, but DEC prefers the following three:
· Unsigned Numeric: no sign; least significant digit contains an ASCII decimal digit.
· Zoned Numeric
· Overpunch Numeric
· *Leading Separate Numeric String: sequence of bytes in memory; specified by two attributes (address of first byte [also sign byte, each subsequent byte contains an ASCII digit character], length of string in digits [0 through 31]); higher address = less significance.
*Packed Decimal String: sequence of bytes; same specification as LSNS; when the number of digits is odd, digits and sign fit in (L/2)+1 bytes; when number of digits is even, an extra zero must appear in bits (4-7) of the first byte of the string; length in bytes is (L/2)+1; bytes divided into two four-bit field that must contain decimal digits, except for bits (0-3) of the last byte (contains sign).

Addressing
The VAX architecture is 32-bit which means that virtual addresses are 32 bits long, allowing 4.3 billion bytes of virtual address space. Bits in memory are read from the right to the left. Virtual addresses are translated to physical memory addresses through a memory management system, which is gone in to more detail later.

The following are some of the basic addressing modes of the VAX architecture and some details about each (Key: D = displacement; B = Byte; W = Word; L = Longword):

· Register Mode: the register contains the operand; assembler notation is “Rn”.

· Register Deferred Mode: the register contains the address of the operand; assembler notation is “(Rn)”.

· Autoincrement Mode: the register contains the address of the operand, the processor then increments the register’s content by the size of the operand data type; assembler notation is “(Rn)+”.

· Autoincrement Deferred Mode: the register contains the address of the operand address, the processor then increments the register contents by four; assembler notation is “@(Rn)+”.

· Autodecrement Mode: the processor decrements the register’s content by the size of the operand data type, then the register contains the address of the operand; assembler notation is “-(Rn)”.

· Displacement Mode: the sum of the contents of the register and the displacement is the address of the operand:

· Byte Displacement Mode: assembler notation is “B^D(Rn)”.

· Word Displacement Mode: assembler notation is “W^D(Rn)”.

· Longword Displacement Mode: assembler notation is “L^D(Rn)”.

· Displacement Deferred Mode: the sum of the contents of the register and the displacement is the address of the operand:

· Byte Displacement Deferred Mode: assembler notation is “@B^D(Rn)”.

· Word Displacement Deferred Mode: assembler notation is “@W^D(Rn)”.

· Longword Displacement Deferred Mode: assembler notation is “@L^D(Rn)”.

· Literal Mode: the literal specified is the operand; efficient for specifying integer values 0-63 and certain floating point values; assembler notation is “S^#literal”.

· Index Mode: base-mode specifies the base address and the register specifies the index; sum of base address and product of the contents of Rx and the size of the operand data type is the address of the operand; assembler notation is “[Rx]”.

Processor State

The processor state is the portion of a process that is stored in the processor’s register rather than memory while it is executing. The processor state includes the following:

· Sixteen 32-bit General Purpose Registers denoted R[n], in which n is the register’s number from 0-15, these general purpose registers are base registers (containing an address), index registers (containing an address offset), temporary storage, and accumulators. The bits of each register are numbered (0-31). Some of these registers are not open for usual base register purposes, and they have their own specific functions, for instance:

· R[15]: program counter; contains the address of the next instruction byte.

· R[14]: stack pointer; contains the address of the top of the processor-defined stack.

· R[13]: current frame pointer; contains the address of the base of the stack frame data structure.

· R[12]: argument pointer; points to the base of the argument list, which is used to call processes.

· A 32-bit Processor Status Longword (PSL) which contains two different Words (1) privileged processor status, and (2) the condition codes that give data on the results produced by previous instructions.

· Privileged Internal Processor Registers (IPR) which provides access to many CPU control and status registers. These registers are the size of a Longword

Memory

The VAX architecture permits multiple processes to be located in physical memory at any one time so a memory manager is necessary to ensure that the processes don’t interfere with each other. The memory manager uses memory protection and multiple address space to make this interference doesn’t occur.

There are four different access modes used by the memory manager, in order of most to least privileged, Kernel, Executive, Supervisor, and User. For each of the modes, protection is specified at the individual page level as inaccessible, read-only, and read/write-only.

When a process is run, the CPU generates virtual addresses, which are translated into physical address by using a page table. The VAX memory mapping facilitates very large address space, data structures up to one gigabyte, convenient and efficient instruction and data sharing, and increased software reliability.

The VAX virtual address space is divided into two equal-sized spaces. The first space is the System Address Space (SAS), which is the same for all processes, and contains the operating system. The second space is known as the Per-Process Space, this space allows controlled sharing to processes that may have access to the same page.

Timeline

Note: Omitted are several small events that did not demand inclusion in the brief history of the VAX architecture.

1975 – Virtual Address eXtension (VAX) computer architecture is first announced.

1978 – VAX-11/780 introduced: case is 60” tall by 47” wide; first computer to pass the One-Million Instructions Per Second (MIPS) barrier; four megabytes of Random Access Memory (RAM); implemented all instructions, G_floating and H_floating data types were optional; system rated at 1.0VUP.

1980 – VAX-11/750 introduced: case is 42” tall by 29” wide; implemented all instructions, G_floating and H_floating data types were optional; system rated at .6VUP.

1982 – VAX-11/782 introduced: case is 60” tall by 190” wide; dual-processor 780, processors shared memory; system rated at 1.8VUP.

1982 – VAX-11/730 introduced: case is 42” tall by 22” wide; first VAX to implement all instructions and data types; system rated at .3VUP.

1984 – VAX-11/785 introduced: case is 60” tall by 80” wide; upgraded 780, 50% faster; implemented all instructions, G_floating and H_floating data types were optional; system rated at 1.5VUP.

1984 – VAX-11/725 introduced: case is 25” tall by 18” wide; identical to 730, but smaller; system rated at .3VUP.

1984 – MicroVAX I introduced: case is 22” tall by 6” wide by 28” deep; first VAX to use a true subset implementation; very slow, rated at .3VUP.

1984 – VAX 8600 introduced: case is 60” tall by 80” wide; implemented all instructions; system rated at 4VUP.

1985 – VAX 8650 introduced: upgraded 8600; system rated at 7.0VUP.

1985 – MicroVAX II introduced: first single-chip processor; subset instruction implementation; commercially a very popular system; system rated at .9VUP

1986 – VAX 8200 introduced: case is 42” tall by 22” wide; implemented all instructions but not PDP-11 compatibility mode; system rated at 1.2VUP.

1986 – VAX 8300 introduced: dual-processor 8200; implemented all instructions but not PDP-11 compatibility mode; system rated at 1.3VUP.

1986 – VAX 8800 introduced: 60” tall by 80” wide; supported multiple processors; was a commercial giant; implemented all instructions but not PDP-11 compatibility mode; system rated at 12VUP.

1986 – VAX 8500 introduced: single-processor 8800; implemented all instructions but not PDP-11 compatibility mode; system rated at 6VUP.

1987 – VAXStation 2000 introduced: very small system; popular for graphic design; system rated at .9VUP.
1987 – MicroVAX 3500/3600 introduced: first VAX to use CVAX chip; had physical space for 64 megabytes RAM; system rated at 2.7VUP.

1988 – VAX 6200 introduced: commercial hit, still in use today.

1989 – VAX 9000 introduced: known as a big, hot, expensive, and electricity consuming machine; system rated at 157VUP.

1990 – VAX 4000 introduced: known as a more robust and useful MicroVAX; supported 512 megabytes RAM; depending upon model, rated from 5-45VUP.

Timeline (cont.)
1990 – VAX 6000 introduced: first VAX to use Mariah chip; system rated at 72VUP.

1991 – VAX 7000/10000 introduced: first systems to actually be rated in MHz, rated at 91MHz.

1997 – Development of new models ends.

1998 – Compaq purchases DEC for $9.6 billion.

1999 – Sales of new systems ends.

Bibliography

· Compaq Corporation (2001). “VAX MACRO and Instruction Set Reference Manual.” URL: http://www.openvms.compaq.com:8000/73final/4515/4515pro_004.html

· Compaq Corporation (Date unknown). “VAX Timeline.” URL: http://www.compaq.com/alphaserver/vax/timeline/

· Haemmerle, Vance (1997). “My other VAX is a VAXBar.” URL: http://www.lpl.arizona.edu/~vance/www/vaxbar.html

· hamster@telnet.hu. (Date unknown). “VAX.” URL: http://telnet.hu/hamster/vax/e_main.html

· Jones International (1999). “Digital Equipment Corporation (DEC).” URL: http://www.digitalcentury.com/encyclo/update/dec.html

· Leonard, Timothy (1987). VAX Architecture Reference Manual. Billerica, MA: DECBooks. QA76.8.V37V38 1987: ISBN 0-932376-86-X

· Pyramid Technology Services. (Date unknown). “VAX VUP Comparison Chart.” URL: http://www.pyramiddec.com/vupperf.htm

· Silverman, Dwight. “Compaq Buys Digital, Rises to Industry’s Top 3.” Houston Chronicle. 27 January 1998. URL: http://www.chron.com/content/chronicle/page1/98/01/27/com.html

PAGE
3

