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Preface:

“The Bunny People
  
How many of you have heard of the “Bunny People”?  Most of course. In those commercials, created by Intel, the dancing suit guys are claiming better multimedia performance. But where are they getting this improvement?  To the end user, they see better performance when using MMX.  What is not commonly known is that they are in essence pushing a technology architecture called SIMD. SIMD is fast becoming a big area in computing, from Game Consoles to DSPs to Computers, not to mention Supercomputers.

Section One:

An Introduction to SIMD Architecture


So what is SIMD?  SIMD stands for single instruction, multiple data. It is the ability to do the same instruction on multiple pieces of data.  This can lead to significantly better performance, since it is using less cycles with the same amount of data.  It is not a new concept, but it is new for the desktop.  Older supercomputers, such as the Cray-1 used SIMD, but it was a substantial amount of time until it was used on the desktop.  Improvements in manufacturing made it feasible to add the transistors needed, and the need for greater multimedia performance has convinced chip developers to add SIMD.


The real world example given to explain SIMD further is a drill instructor telling his corps to about face, or turn. Instead of ordering each soldier one by one to about face, he can order the entire corps to do so. A programming example is adding a bunch of numbers to another bunch of numbers. This is done by packing the numbers into a vector. For instance, to add {1,2,3,4} to {5,6,7,8} you could add 1 to 5, 2 to 6, and so on. Or you could use SIMD and add 1,2,3,4 to 5,6,7,8, and the result gets stored, when you can then unpack it and store it in a register. This is why it is sometimes called vector math.


SIMD has far-reaching applications; although the bulk and focus has been on multimedia. Why? Because it is an area of computing that needs as much computing power as possible, is popular, and in most cases, it is necessary to compute a lot of data at once. This makes it a good candidate for parrallelization. It is certinately not the only use of it.  For instance, SIMD could be used in brute force encryption to create several encryption keys at once.


To help support a product, chip companies will typically provide basic functions, some examples, and some documentation to help programmers write programs for their technology.  For instance, Intel has available on their web site code for things like basic add, trignometry functions such as sine and cosine, as well as some “real world” examples such as Fast Fourier Transform, which is used in audio electronics and applications.


One thing that tends to come up a lot in SIMD/Multimedia applications is saturation arithmetic.  It is similar to unsigned arithmetic with one, howver simple, difference.  Removed is the carry bit and the overflow bit.  Instead of a number of tries in order to cause overflow, like computing 200 + 100 on a 8-bit number, saturation arithmetic will try to represent the largest number it can, which in this case is 255.  This is useful in representing colors, for instance, because a color is not representable higher than the max amount regardless.


The biggest limitation of SIMD is of its difficulty to implement.  It can be hard to find parts of code that can be used effectively using SIMD techniques.  Also, since this code must be written by hand, it can take longer to develop software, and it can be difficult to ensure that the code is using the most out of the chip.  Things like a pipeline stall can reduce the effectiveness.  One thing to take note is that in many cases, the code that can be parrallelized will be the largest part, but not the entire code.  So when taking into account all parts of the program, the real-world performance boost could be from nothing to several times faster.  Done effectively, double the speed and more is not uncommon in terms of performance gain.


What will be discussed are five architectures - Intel’s MMX, SSE, and SSE2, AMD’s 3dNow, and Motorola’s AltiVec.
Section Two:


Intel MMX

MMX technology was Intel’s first foray into the world of multimedia extension in faster encoding and decoding of information is achieved.  Video, audio, and multi-dimensional graphics can be viewed and processed faster on any computer enabled with MMX technology.  With MMX, CPU instructions can be processed simultaneously  – a common term in computing which is referred to as parallelism.  Intel branded the MMX acronym to stand for MultiMedia EXtensions and was first introduced to Pentium-based processors in the latter-half of 1990’s.

MMX technology defines four new data types. Each new data type contains 64 bits.  The four data types are called packed bytes, packed words, packed double word, and packed quad word. The packed byte contains eight 8-bit bytes.  The packed word contains four 16-bit words.  The packed double word contains two 32-bit double words.  The packed quad word contains one 64 bit quad word.  Each data type can be placed consecutively into memory.  This technique enables operations to be completed in parallel, termed SIMD (Single Instruction Multiple Data).  Multimedia applications require many instructions to be repeated frequently so MMX fulfills the need of processor-hungry multimedia applications.  The new technology allows statements to be completed simultaneously instead of doing one command at a time.  This is why MMX was such a breakthrough for Intel.  For example, pixel applications are represented in bytes.  Using the new packed byte data type eight pixel bytes can be simultaneously executed at once instead of executing each byte one at a time for eight cycles.

MMX has been used with Intel processor chips since its introduction with the original Pentium MMX.  Since then, Pentium II processors, Celerons, the low-budget Intel processor, and Pentium Xeon processors have all carried the extra MMX instructions.  All of the registers and states used by the MMX technology are aliases of existing registers and states already in the existing architecture, which was originally intended for floating point technology.

However, Intel introduced new instructions to the instruction set.  Most of the original instructions contained three or four letters.  Some examples include ADD, ADDC, JMP, LDA, STA, and SUB.  The new instructions are old instructions with new prefixes and suffixes.  This is required to deal with the new packed data types.  The new prefix used is the letter P that stands for “packed.”  The new suffixes identified which data type is being used.  B stands for byte, W stands for word, D stands for double word, and Q stands for quad word.


From a programmer’s standpoint, MMX code is very difficult to write.  In order to enhance an application using MMX instructions, a programmer has to take one level of abstraction step down to assembly; a tedious task to say the least.  There have been a few attempts to write C/C++ compilers which can automatically turn normal C code into MMX optimized operation codes, but the process is very complex and hardly bug-free, not to mention that doing so places limitations on the MMX operations used by the programmer.  

MMX technology is a very important step in the development of SIMD and a large marketing campaign for Intel.  The technology dramatically increases the amount of instructions that can be processed by computers within a given amount of time.  The technology enables graphics cards to run at faster rates and be able to handle more complex images and effects. 
Section Three:

Intel SSE

In an effort to further extend the x86 architecture, Intel proposed Streaming SIMD Extensions (SSE) in the middle of 1999 to further enhance multimedia and communication applications.  Intel’s first attempt at such multimedia enhancement came in the form of MMX processor technology, as discussed earlier in this report.  However, with SSE Intel had plans to not only improve multimedia performance but to provide complimentary graphics horsepower along side of a video card for three-dimensional transformational graphics.  Intel succeeded admirably with its plans for SSE.  The final set of instructions, to be discussed later, is implemented in Intel’s Pentium III and 4 brands of computers, as well as later Pentium III Xeon and Celeron II processors.

Like Intel’s MMX instruction set, the newer SSE instruction set received quite a bit of promotion, if not mostly on the part of its developer.  While MMX ultimately qualified as more hype than anything else, SSE proved to be an important advance in computer architecture.  As mentioned earlier, an emergence of 3D graphic accelerators decreased MMX’s usefulness in terms of gaming.  SSE picks up where MMX left off in this respect, as 3D hardware acceleration is complimentary to SSE.  SSE instructions handle the geometry and vertex processing while the graphics hardware accelerates visual rendering and lighting operations.  Streaming SIMD Extensions is simply a set of seventy new instructions that extend the already implemented MMX instructions.  Fifty of the new instructions work on packing floating-point data, 8 of the new instructions are designed to control cacheability of all MMX and 32-bit data types and to “preload” data before it is actually loaded, and the last of the seventy new instructions are simply extensions of MMX.  SSE also provides eight new 128-bit SIMD floating-point registers that can be directly accessed by a computer’s processor.  A floating-point unit is simply a “double” in programming terminology.  One of Intel’s approaches to implementing SSE was to allow the extra functionality of MMX in conjunction with the new SSE instruction set.  Allowing the programmer to develop algorithms using a variety of packed and floating-point data types was a must for Intel’s SSE to succeed.  The reason for this necessity is that most media applications are parallel and have regular memory access patterns (in terms of which registers are accessed at various points in an application’s process).

To delve deeper into the “streaming” aspect of SSE, one must first understand a few basics of computer cache.  Cache can be stored on the CPU microchip, or, inside of the chip itself (as with newer Intel Pentium models).  It is a small amount of memory that loses data quickly, holding instructions for only a short while and then sending them to the CPU.  Cache allows instructions to be stored until the CPU is ready to process them, essentially creating a buffer (think of a Producer-Consumer and a multi-threaded application) by which the computer’s central processing unit (CPU) can quickly retrieve instructions waiting to be executed.  SSE’s “streaming” technology actually allows instructions to “prefetch” data that will needed by the CPU later or to bypass the cache altogether.  This prevents the more important contents of the existing cache from having to be forced out too soon, as cache is only able to hold so much information (usually about 512K).  Essentially, SSE allows data to be “streamed” into the processor for longer intervals, thus increasing software and graphics performance.

Intel SSE provides 128-bit registers named XMM0 through XMM7 that are capable of being accessed directly by the CPU.  MMX instructions can be mapped onto these registers, allowing both SSE and MMX instructions to be mixed.  Each of these eight registers consists of four 32-bit single precision, floating-point numbers ranging from 0 to 3.  However, SSE is not truly capable of handling 128-bit operations.  The extension handles 128-bit operations by doing two simultaneous 64-bit operations using four registers.  As MMX enhances integer-based calculations, it is obvious that SSE provides that that sort of functionality for floating-point values – extremely useful in vertex-based and other graphics-related calculations.

Intel SSE2
Intel released their new SSE2 instruction set to further extend the capabilities of both MMX and the original SSE.  Even with recent advances in x86 architecture (Pentium 4 processors, MMX, SSE, faster bus speeds), current RISC processors such as Digital’s Alpha, continue to offer better floating-point performance then x86 CPUs.  A CPU capable of carrying out float-point (FP) calculations is ideal for scientific simulations, a growing industry around the world.  Thus, Intel’s primary drive with SSE2 is to decrease the aforementioned gap in FP performance.  The improvement over the original SSE is that processors equipped with SSE2 can work on 128-bit blocks of data while supporting 64-bit floating-point values.  If you recall, Intel’s SSE is capable of handling 128-bit blocks of data via processing two simultaneous 64-bit operations.  SSE2 exceeds SSE in this area by keeping the data path at 128-bits, 64-bits in parallel, but while using only two registers, instead of four (like the SSE).  Thus, in this regard, the SSE2 is a significant step over the SSE.

In fact, the SSE2 architecture offers performance in the FP area that will not be matched until Pentium CPUs reach the speed of 3+ gigahertz for a computer not equipped with SSE2.  One author, Steve Tommesani, notes that the “performance gain achieved by using SSE2 could actually be much greater than 2x…” This gain in performance, however, may go fairly unnoticed, as the current Pentium 4 processors are very high-end, resulting in a small market share at present.  Developers may be unwilling to take the time to convert standard MMX or SSE code into SSE2 operations because of the already low market share, especially since the rate at which CPU core speeds have been increasing as of late.

Section Four:


AMD 3dNOW!


Three dimensional (3D) graphics and engines have made a huge emergence into the world of PC computing in recent years.  Video cards of all makes and brands compete for the highest reviewer awards and fastest frame rate.  Recent video cards, like nVidia’s GeForce 2 Ultra, can cost up to $400 per unit.  Mathematically speaking, the front-end of a typical 3D engine must perform geometry transformations, realistic physics on 3D objects, lighting calculations, and texture clipping.  A single 3D object may consist of thousands upon thousands of polygons, requiring complex vertex mathematics to recalculate each polygon after each frame of animation.  Obviously, the sheer number of calculations required for every CPU clock cycle is enormous.  


Intel processors have always featured fast numeric performance, especially with the recent advances in MMX and SSE technology discussed earlier.  AMD, in past years, has normally concentrated on producing the fastest chips for the business-minded client; typically, business applications require less numerical processor power, essentially lacking the floating-point power of Intel’s processors.  To gain a share in the aforementioned demand for processor power to drive the latest 3D games and scientific applications, AMD created their 3dNOW! project to gain acceptance among gamers and high-tech companies.  At the time of its introduction, AMD aimed 3dNOW! to out-perform Intel’s line of Pentium II computers featuring MMX technology.  


Much like Intel’s MMX and SSE SIMD architectures, AMD provides 21 additional instructions to support higher-performance 3D graphics and audio processing.  The instructions are vector-based and operate on 64-bit registers (less than the 128-bit registers used in Intel’s SSE).  The 64-bit registers are further divided into two 32-bit single-precision floating-point words.  More recent inclusions of 3dNOW! technology include AMD’s K6/Athlon processors reaching up to 1.33 Ghz CPU speed.  In the Athlon, the 3dNOW! registers are mapped onto the floating-point registers of the main Athlon processor, just like with MMX does with integers.  Like SSE, AMD’s 3dNOW! technology also has operations to “prefetch” data before it is actually used, referring again to the example of cacheability.


While AMD has steadily gained a significant portion of the processor market, its compatibility issues with Microsoft Windows operating systems and the fact that 3dNOW! does not fully support MMX, SSE, or SSE2 instructions are holding AMD from gaining more than a quarter of the processor market.            

Section Five:


Motorola AltiVec
Like Intel’s MMX, AltiVec technology also allows for faster coding and encoding of information.  AltiVec, however, is designed for Apple Power PCs.  

Motorola's AltiVec technology expands the current PowerPC architecture through the addition of a 128-bit vector execution unit, which operates concurrently with the existing integer and floating point units. This new engine provides for highly parallel operations, allowing for the simultaneous execution of up to 16 operations in a single clock cycle.  AltiVec uses smaller vectors and combines many similar instructions to create a longer vector.  This allows for SIMD, discussed and explained earlier.  Sixteen 8-bit numbers, eight 16-bit numbers, or four 32-bit numbers can be processed simultaneously.  The general rule of thumb is that similar types of information are grouped into groups of 128-bits.  Each piece of the 128-bit group can be executed simultaneously.  Like MMX, AltiVec uses the existing floating-point (FP) architecture to organize and precisely locate packets of similar information to be stored together in the 128-bit long vectors.  Also like MMX, AltiVec uses new instructions to define the different packet groupings.  


AltiVec technology has many varied applications.  Specific applications include, Internet routers, servers, speech processing systems, and video and graphic applications.  Also, mundane tasks, such as pager clears, string comparisons, and memory copying can be performed much more efficiently in less time.  


Motorola used C and C++ to program the AltiVec technology.  Motorola also seemed more open about sharing the actual code and allowing users to tweak the code to benefit their personal use of the AltiVec technology.       


AltiVec is made specifically for the Apple Macintosh line of Power PCs and Digital Signal Processors (DSPs).  The biggest difference in AltiVec is that each vector contains 128-bits instead of the 64-bits that is used in Intel's MMX technology packing technique.  Going back to the MMX pixel example, eight pixel commands can be executed at once because of the parallel and SIMD processing.  This is because eight times eight is equal to 64-four bits.  However, using the AltiVec system, the largest vector is 128-bits, which means that sixteen pixels can be executed at once using the AltiVec system.  Under the AltiVec system two times as many instructions can be executed.  However, the Power PC 7400/7500 "G4" has lagged behind AMD and Intel in terms of MHz. The fastest chip can only be had at 733 MHz, and only in limited quantities.  This is fine for DSPs, where chips which need to be able to run sans a fan.
Section Six:


Common SIMD Applications


Benchmarks


A whole paper could be done on just simply different benchmarks using SIMD and interpreting the results.  One very good area to explore is 3D graphics.  Some of the most intensive applications available are 3D games, and they take very good use of floating point SIMD when possible.  The bulk of these are done on building the scene, rotating models and other manipulations of 3D models.  These are often done per vertex of a polygon, and as the games get more complex there will be a greater need for parallel math.



In this case, SIMD came to the rescue of the very poor floating-point performance of the K6-2.  Enabling the 3dnow drivers instead of the simple floating point caused the frame rate of this benchmark, from id’s Quake 2, to jump from 44.2 frames a second to 76.4, a 72 percent boost.  Although Quake 2 these days is fairly old, it does give a good example of how it is used in 3d games. 


Game consoles have begun to use SIMD, and with good reason.  The four modern consoles - Sega’s Dreamcast, Sony’s Playstation 2, Microsoft’s XBox, and Nintendo’s Gamecube all have it. Although primarily there to speed up 3D graphics, it could be used in assisting other uses, such as audio processing, video, and perhaps whatever the developer can come up with.

Applications

Two such real world examples of usage of SIMD are Fast-Fourier Transform (FFT) and three-dimensional transform. Fast Fourier Transform is used primarily with applications dealing with waveforms, such as Digital Signal Processors (DSPs), radar, sonar, and more popularly, audio/mpeg encoding (MP3s).  According to Intel, FFT “separates a waveform or function into sinusoids of different frequency which sum to the original waveform.”  This is useful in MP3 creation and playback because the goal of the encoding is to remove unused or too “soft” parts of an audio wave.


MP3s certainly coincide with the aforementioned reasons: MP3s are popular, require a fast computer to encode/decode quickly, and can be encoded/decoded using SIMD techniques.  This can be done using integer-based calculations, but it might be better to use a floating-point calculation to get a better approximation of the audio wave and thus encode or decode the file more efficiently.


3D transform is also one such other example. In rendering a three-dimensional scene, typically the central processing unit (CPU) will complete the first part of the drawing, called the Transform and Lightning stage. Even with 3D acceleration, this part is done by the CPU, and a 3D accelerator, if available, will do the scene painting; however future cards, such as nVidia’s GeForce 3, will do this on the chip itself, although the process will likely be similar, but faster.  Since this multiplication is done on every vertex in a scene, the potential for a savings doing several of them at a time is great. This performance boost will definitely help speed up 3D games, where the bulk of the CPU time is take up performing 3D transform, and is also the reason why modern game consoles have an ability to use SIMD on 3D transform.
Section Seven:


Closing Discussion

Single Instruction Multiple Data architecture has a large impact on a computer chip’s efficiency and power in computing vector-based mathematics.  Implementations of SIMD, such as Intel’s SSE and SSE2, feature extensive floating-point and integer computational precision which allows it to be ideal for scientific simulations and more realistic 3D games.  Single Instruction Multiple Data architecture is not a recent advancement in computing, however, and has been in use since the original Cray-1 supercomputer.  SIMD works by performing an instruction on multiple pieces of data at the same time by packing a vector with data and sending each data parallel to one another.  The most recent implementations of SIMD have resulted in dramatic increases in floating-point precision and calculation performance, amounting to faster decoding and playback of video, audio, gaming engines, and most other forms of multimedia, as well as the complexity of scientific simulations.  Some might say that with the ever-increasing clock speeds of today’s CPUs, the importance of SIMD architecture will likely fade in the future as the core processor will be able to perform any calculation just as fast as any MMX, SSE, SSE2, 3dNow! or other extension may allow.  It should be known, however, that multimedia applications and simulations are the driving force behind the need for faster CPU core speeds to begin with; as core clock speeds increase past the 2 Ghz mark, SIMD architecture will be as important as it ever was as developers push the envelope of multimedia and scientific applications.

Glossary of Terms

bit - smallest piece of computer information 0 or 1

bit depth - the amount of data that can be accessed, for instance MMX can be accessed using 64 bit.

byte - eight bits
cacheability – the topic area of improving performance of cache

data type- Specifically defined Software identification category

double-word - thirty-two bits

nVidia GeForce 2 Ultra – an expensive video board sporting 64 MB of DDR RAM,    accelerating and enhancing 3D games such as Quake III and Half-Life

pixel - smallest viewable area on a computer monitor

quad-word - sixty-four bits
register - memory spaces inside the chip used as storage

saturation arithmetic – similar to unsigned arithmetic, however any carry or overflow-bit is ignored and the maximum value is accepted in such cases 

SISD - Single Instruction Single Data

word - sixteen bits
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