
CS-480: Computer Architecture

Summer 2002, Section 6002

Clinton Morse

Eric Bediako

Jonathan Frank

Table of Contents

3Introduction:

Floating-point instructions on a VAX 11:
4
F_ floating
4
D_floating
4
G_floating
5
H_floating
5
Little-Endian
5
Floating point zero on a VAX 11
6
VAX 11 Language and the Machine:
6
Microprogramming:
8
Conclusion:
9

Introduction:

The name VAX, which stands for "Virtual Address eXtension”, refers to the large virtual address space, which was meant to be an extension to the PDP –11 architecture.

In the first months of the project, the machine was called PDP-11/780.
The following are the types of VAX machines that follow the VAX-11 architecture.

VAX –11/780: The VAX-11/780 computer system was announced in 1978, was the first processor of the VAX family. It is packaged in a cabinet 60 inches tall and 47 inches wide. The VAX-11/780 includes all the instruction (G_floating and H_floating are available as an option), all architecturally defined processors registers and compatibility mode

VAX –11/750: The VAX-11/750 computer system was announced in 1980, was the second processor in the VAX family. It is packaged in cabinet 42 inches tall and 29 inched wide. The VAX -11/750 includes all the instructions (G_floating and H_floating are available as an option), all architecturally defined processors registers and compatibility mode

VAX –11/730: The VAX-11/730 computer system was announced in 1982, was the third processor in the VAX family, and the first to include G_floating and H_floating as standard. It is packaged with two disks in a cabinet 42 inches tall and 22 inches wide

The VAX-11/730 includes all the instructions, all the architecturally defined processors registers and compatibility mode

VAX –11/782: The VAX-11/782 computer system was announced in 1982,it is a dual processor VAX-11/780 with shared memory. The cabinets containing the processors, I/O adapters, and shared memory are 60 inches tall and 190 inches wide

VAX –11/725: The VAX-11/725 computer system was announced in 1984, it is a repackaged version of the VAX-11/730 processor. The cabinet is 25 inches high and 18 inches wide, and includes memory, two TU58 tape cartridge drive and an RC25 disk

VAX –11/785: The VAX-11/785 computer system was announced in 1984, is available as a field upgrade to VAX –11/780. It is packaged in a cabinet 60 inches tall and 80 inches wide, including processor, memory and I/O adapters. The VAX -11/785 is identical to the VAX-11/780 from the point of view of software, except that the VAX-11/785 has increased performance and has a bit set in the SID internal processor register, by which software can differentiate between the two processors types.
The VAX-11 was one the landmark designs of computer architecture. This can be seen because the same VAX-11 was used for eight years in the field where the technology doubles every six months. Though VAX-11 is about twenty years old, today it is worth discussing because of its historically significance. We will therefore briefly discuss its number representation, micro-program and language and machine code.

Floating-point instructions on a VAX 11:

Mathematically, a floating-point number may be defined as having the form

(+ Or -) (2k)*f where K is an integer and f is a non-negative fraction.

The VAX floating-point data formats are derived from this mathematical representation for floating point numbers. Four types of floating point data are provided: the two standard PDP-11 formats (F_floating and D_floating) and the two extended range formats (G_floating and H_floating). Single precision, or the floating, data is 32 bits long. Double precision or D_floating, data is 64 bits long. Extended range double precision, or G_floating, data is 64 bits long. Extended range quadruple-precision, or H_floating, data is 128 bits long.

F_ floating

In the F_floating format the first seven bits (high order bits in a register) are the most significant normalized fractional mantissa bits, with a hidden bit. This is followed by eight bits of an excess one hundred twenty eight binary exponent. Then comes the sign bit, followed by the remaining twenty-four bits of the fraction.

	VAX-11 Floating Point Representations: "F_Floating" Structure (32 bit "longword"):

	31
	30
	29
	28
	27
	26
	25
	24
	23
	22
	21
	20
	19
	18
	17
	16
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	Fraction (second part): bit 16 is the least significant
	Sign Bit
	Exponent
	Fraction (first part): bit 6 is the most significant

D_floating

In the D_floating format the first seven bits (high order bits in a register) are the most significant normalized fractional mantissa bits, with a hidden bit. This is followed by eight bits of an excess one hundred twenty eight binary exponent. Then comes the sign bit, followed by the remaining bits of the fraction.

	VAX-11 Floating Point Representations: "D_Floating" Structure (64 bit "longword"; first 32 bits):

	31
	30
	29
	28
	27
	26
	25
	24
	23
	22
	21
	20
	19
	18
	17
	16
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	Fraction: second part
	Sign
Bit
	Exponent
	Fraction (first part): bit 6 is the most significant

	

	second 32 bits:

	63
	62
	61
	60
	59
	58
	57
	56
	55
	54
	53
	52
	51
	50
	49
	48
	47
	46
	45
	44
	43
	42
	41
	40
	39
	38
	37
	36
	35
	34
	33
	32

	Fraction: fourth part: bit 48 is the least significant
	Fraction: third part

G_floating

In the G_floating data type, 11 bits are reserved for the storage of the exponent in excess 1024 notation. Thus, exponents are restricted to –1023 to +1023 inclusive. The remaining 52 bits are used for the normalized fractional mantissa, with a hidden bit, and the sign bit.

	VAX-11 Floating Point Representations: "G_Floating" Structure (64 bit "longword"; first 32 bits):

	31
	30
	29
	28
	27
	26
	25
	24
	23
	22
	21
	20
	19
	18
	17
	16
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	Fraction: second part
	Sign
Bit
	Exponent
	Fraction (first part): bit 4 is the most significant

	

	second 32 bits:

	63
	62
	61
	60
	59
	58
	57
	56
	55
	54
	53
	52
	51
	50
	49
	48
	47
	46
	45
	44
	43
	42
	41
	40
	39
	38
	37
	36
	35
	34
	33
	32

	Fraction: fourth part: bit 48 is the least significant
	Fraction: third part

H_floating

In the H_floating data type 15 bits are reserved for the storage of the exponent in excess 16384 notation. Thus, exponents are restricted to –16383 to +16383 inclusive (in excess notation, 1 to 32767). The remaining 112 bits are used for the normalized fractional mantissa, with a hidden bit, and the sign bit.

	VAX-11 Floating Point Representations: "H_Floating" Structure (64 bit "longword"; first 32 bits):

	31
	30
	29
	28
	27
	26
	25
	24
	23
	22
	21
	20
	19
	18
	17
	16
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	Fraction: first part
	Sign
Bit

	

	second 32 bits:

	63
	62
	61
	60
	59
	58
	57
	56
	55
	54
	53
	52
	51
	50
	49
	48
	47
	46
	45
	44
	43
	42
	41
	40
	39
	38
	37
	36
	35
	34
	33
	32

	Fraction: third part
	Fraction: second part

	third 32 bits:

	95
	94
	93
	92
	91
	90
	89
	88
	87
	86
	85
	84
	83
	82
	81
	80
	79
	78
	77
	76
	75
	74
	73
	72
	71
	70
	69
	68
	67
	66
	65
	64

	Fraction: fifth part
	Fraction: fourth part

	fourth 32 bits:

	127
	126
	125
	124
	123
	122
	121
	120
	119
	118
	117
	116
	115
	114
	113
	112
	111
	110
	109
	108
	107
	106
	105
	104
	103
	102
	101
	100
	99
	98
	97
	96

	Fraction: seventh part; bit 112 is the least significant.
	Fraction: sixth part

Little-Endian

Since, the VAX is a little-endian machine, the floating point diagrams appear to be haphazard and against what we said in the floating point discriptions.

Floating point zero on a VAX 11

Because of the hidden bit, the fractional factor is not available to distinguish between zero and non-zero numbers whose fractional part is .1 in binary. VAX architecture reserves a sign-exponent field of 0 for this purpose. Any positive floating-point number with a biased exponent of 0 is treated as if it were an exact 0 by the floating-point instruction set.

VAX 11 Floating Point Table

	Float Name
	Radix
	Sign
	Exponent bits
	Fractional bits
	Bias

	F_ float
	2
	1
	8
	23
	Excess 128

	D_ float
	2
	1
	8
	55
	Excess 128

	G_ float
	2
	1
	11
	52
	Excess 1024

	H_float
	2
	1
	15
	113
	Excess 16384

VAX 11 Language and the Machine:

The VAX 11 is a CISC machine, meaning that it is a Complex Instruction Set Computer. According to The Jargon Dictionary, the VAX was one of the most successful minicomputer designs in history partially due to its large, assembler-programmer-friendly instruction set.

The VAX assembly language, like every other assembly language, can be broken down into four types of instructions: executable, storage directive, assembler directive, and macro. Executable instructions are operation oriented machine language instructions. They perform operations such as addition, data conversion, and branch operations. Storage directive instructions assign labels to memory locations and store values in them. Assembler directive instructions guide the assembly process but have no barring on the machine code. Macroinstructions are instructions that when translated into machine language, are replaced by equivalent groups of machine language instructions (paraphrased from Lehmkuhl).

VAX assembly format is very similar to most assembly codes that exist. There for, if a programmer knows one assembly language, he/she can follow an assembly program written for a VAX machine. For this reason I refer to the VAX Architecture Reference Manual to learn how to write a VAX assembly program, and the rest of this section will be devoted to understanding the conversion between VAX assembly instructions and machine code.

The VAX has a very limited number of registers. Because so much of the space on the CPU is devoted to the large instruction set, there is only enough space left over for seventeen registers, of which only sixteen are listed as general purpose registers. Out of those sixteen registers, only eleven of those registers are truly general purpose. The others are reserved for the stack pointer, program counter, frame pointer, argument pointer, and temporary data storage. (paraphrased from Bjork)

To deal with the very limited number of registers the VAX, like all other CISC machines, allows for direct access to main memory. The VAX has sixteen different addressing modes to deal with address memory in different ways. (paraphrased from Bjork)

The VAX 11 instruction set, and subsequent possible machine instructions, is too big to go over in a paper of this size, so we will limit the number of instructions by only focusing on two addressing modes, register mode, and absolute mode.

All VAX instructions have the following basic format: a one or two byte op-code, followed by zero to five operand specifiers. The number of specifiers needed depends on the op-code. Each specifier is one to seventeen bytes long. The first bytes always contain four bits to determine the addressing mode. After that, the remaining bytes are used by the op-code and the addressing mode to determine the operand location. (paraphrased from Bjork)

To demonstrate how a VAX instruction works, we will look at the register mode, and the absolute mode.

In the register mode, where the operand comes directly from one of the general-purpose registers, the op-code is followed by 0101 (five in decimal), and those four bits are followed by the four-bit register address.

Ex. [1 or two byte op-code]01010000

This instruction shows that the operand will be found in register 0.

(paraphrased from Bjork)

In absolute mode, where the operand comes directly from a memory address, the op-code is followed by 1001 (nine in decimal), and those four bits are followed by a four bytes that contain the address of the operand.

Ex. (in hexadecimal) [1 or two byte op-code] 9000A

This instruction shows that the operand is found in location A in memory.

(paraphrased from Bjork)

To understand how these instructions work, first we need to learn a few assembly directives and there corresponding op-codes.

	Assembly statement
	Op-code
	Description

	
	
	

	MOVL
	D0
	Two operands, source and destination, where the source is copied to the destination

	
	
	

	MULL2
	C4
	Two operands, source and destination, where the destination is multiplied by the source

	
	
	

	ADDL2
	C0
	Two operands, source and destination, where the source is added to the destination.

Here is a segment of a VAX assembly program

	MOVL
	@F400, @F402
	;Store number at memory location 400 in memory location 402 (F represents a hexadecimal number)

	MULL2
	@F401, @F402
	;Multiply number at memory location 401 by number stored at 402 and store in 402

	ADDL2
	R0, @F402
	;Add the contents of RO to the contents of 402

This program would be translated to machine code as follows:

D0 9 0400 9 0402

C4 9 0401 9 0402

C0 50 9 0402

However, because the VAX 11 is a little-endian machine, these machine instructions would actually be written in reverse order (Jargon Dictionary). I wrote them this way just to simplify the translation process.

The large instruction set was also one reason for the replacement of the VAX 11 architecture. In the early to mid 1980s computer engineers started using RISC architecture more often than CISC architecture. The result was consumers moving away from the classic VAX 11 machines.
Microprogramming:

The VAX-11s are CISC machines. The trend towards increasing complexity was generally attributed to the success of microprogramming, of which the VAX-11 was one of the first to implement. The VAX designers created the microarchitecture with ease of compilation in mind, through such methods as generality of operand specification. However, the result was complex, variable-length instructions that made high-performance implementations difficult.

At the core of the microarchitecture lies the microinstruction format. In this format, control words are 96 bits wide, and divided into 30 fields. Thirteen bits of each microinstruction are used to form the address of the successor instruction. When straight-line micro-code is being executed, this address is used directly. But when any conditional branches are taken via the BEN micro-word field, other information is also used. BEN selects one of twenty-six groups of three, four, or five condition bits. For example, group “1A” uses the condition code bits N, V, C, and Z. These bits are then ORed with the LSBs of the micro-address field, also known as the JMP field, to form the address of the successor microword. If the SUB field is one, a micro-subroutine is specified, and the address of the current microword is pushed onto a stack before the branch is taken. If the SUB field is a two, an address is popped off the this stack, and is ORed with the instruction’s JMP field, as well as any conditions specified, to form the next word address.

[image: image1.wmf]15

13

12

0

VAK

FEK

SCK

31

30

29

26

25

24

23

22

20

19

18

17

16

ADS

FS

47

46

43

42

41

35

34

32

63

58

57

55

54

51

50

48

RMX

79

78

77

76

72

71

70

69

66

65

64

95

92

91

88

87

85

84

82

81

80

AMX

ACF

IBC

DK

SHF

BMX

DT

BEN

ALU

SUB

MCT/CID

SPO

PCK

KMX

SI/ACM

QK

SGN

EALU

JMP

IEK

MSC

CCK

EBMX

SMX

Conclusion:

During its time, the architecture designed and developed for the VAX-11 was a superior system. It was so successful that, when it reached its 1.0 MIPS peak, a new processing standard unit of measurement was coined in its name, dubbed VUP – the VAX Unit of Processing. For the next decade, the VAX-11 architecture would be the standard to which other architectures and systems would be compared.

With the increase in technology, however, relatively slow processing time of microprogramming, coupled with the increase in size of the microprogram, cause the architecture to become obsolete. Hard-coded microprograms eventually took its place, and a new series of architecture was born.

Bibliography

VAX: Virtual Address Extension. URL: http://telnet.hu/hamster/vax/e_main.html

The Jargon Dictionary: The Jargon Lexicon. URL: http://info.astrian.net/jargon/terms/

Bjork, Russell C. (1997). Introduction to the VAX: VAX Machine Language. URL:

http://www.cs.gordon.edu/courses/cs222/lectures/intro_to_VAX.html

Lehmkuhl, Nonna Kliss (1987). An Introduction to VAX Assembly Language

Programming. St Paul, Minnesota: West Publishing Company.

Leonard, Timothy E. (1987). VAX Architecture Reference Manual. Bedford,

Massachusetts: DECbooks.

Murdocca, Miles J., Vincent P. Heuring (2000). Principles of Computer Architecture.

Upper Saddle River, New Jersey: Prentice Hall.

Patterson, David A., Karl Lew, Richard Tuck.(1979) Towards an Efficient, Machine-

Independent Language for Microprogramming. Berkeley, California: Department

of Electrical Engineering and Computer Sciences, University of California.

Smotherman, Mark (1999). A Brief History of Microprogramming. URL:

http://jbsim.cs.pku.edu.cn/users/chengxu/Org_web_ext/BriefHist_up/uprog.html

Selected Topics Relating to

VAX-11

Computer Architecture

PAGE
4

_1088269327.xls
Sheet1

		EALU						JMP

		15				13		12																								0

		IEK				MSC								VAK		FEK		SCK		CCK						EBMX				SMX

		31		30		29						26		25		24		23		22				20		19		18		17		16

		ADS		MCT/CID								FS		SPO														PCK

		47		46						43		42		41												35		34				32

		KMX												SI/ACM						QK								SGN

		63										58		57				55		54						51		50				48

		DT				RMX		BEN										ACF				ALU								SUB

		79		78		77		76								72		71		70		69						66		65		64

		IBC								DK								SHF						BMX						AMX

		95						92		91						88		87				85		84				82		81		80

