IA-64 

Vincent D. Capaccio

Table of Contents
Introduction








3

Registers









3 
General Purpose







3

Floating-Point







4


Branch








4

CUPID








4

Predicate








4

Predication








4

EPIC










5

Functional Units








5

Speculation 








6

Compliers









6
Parallelism









7
Conclusion








7
Bibliography








9

In the past few years some may have heard of the new processor entering the market, codenamed the Merced, McKinley, or Itanium.  With grand raves coming from Intel and Hewlett-Packard, most were looking forward to its release with much anticipation.  The IA-64 which is the name of the Instruction Set Architecture (ISA) is a family of processors that will undoubtedly replace the current 32-bit processors (Pentium) in the near future.  Intel and Hewlett-Packard incorporate predication, speculation, superscalar design, and a 64 bit width into this EPIC based CPU.
Merced and McKinley are codenames for different hardware implementations of the IA-64 ISA.  For instance the 80386 and the Pentium Pro and completely different hardware platform, but they both conform to Intel’s x86 ISA that is based on CISC.  The IA-64 is an EPIC chip.
EPIC is an acronym meaning Explicitly Parallel Instruction Computing

An EPIC CPU is one that limits its instruction set even more than a RISC chip creating a leaner CPU with more room for actual computation circuitry, in addition to more room on the CPU dedicated to cache and registers.  

The IA-64 supports large memory addressing.  With 32-bits of addressable memory, only 4 gigabytes of memory can be supported, 4,294,967,296 bytes, but with a 44-bit pointer, memory can be expanded to 16 terabytes, and 54 bits of virtual memory creating a possible memory size of 16 petabytes, 3 levels of cache, bi-endian support and 256+ registers
The register count between the Pentium and the IA-64 is great.  The IA-64 has the ability to process vast amounts of data in a short amount of time, and if that data was fetched from main memory each time, the CPU’s speed and performance would be a moot point.  To avoid this time consuming fetch from main memory, the IA-64 incorporates high-speed registers on the CPU, and a lot of them, that can be accessed in one clock-cycle.  The IA-64 has 128 general purpose registers that are 64-bis wide.  These registers are labeled r0–r127.  The first 32 registers (r0-r31) are static, meaning their names can not be changed.  Some of the static registers are referred to in a different way, r12 is called the stack pointer, and r1 is the global pointer, and r0 always contains the integer number 0.  r32-r127 are dynamic resisters, meaning that if you refer to r32 in a program the actual register might be in a different location on the CPU on the next execution as it is now.   With these 96 dynamic registers each programmed function can have up to 96 local variables stored in the CPU’s high-speed registers for quick reference, without having to go to main memory for a lengthy load routine.  Dynamic registers, or rotating registers, are labeled as follows: r32-r127, f32-f127, and p16-p63
In addition to the general purpose registers, the IA-64 has 128 floating point registers, labeled f0-f127.  Once again, f0-f31 are static, while f32-f127 are dynamic registers.  These registers are 82 bits wide allowing them to accommodate a C++ long double representation.  Some of the floating point registers have a special purpose, for example f0 always holds 0.0 and f1 always holds 1.0.  The other floating-point registers reserve one bit for the sign of the mantissa, 17 bits of the register are used to represent the exponent, and to remaining 64-bits represent the significand, in addition, the significand holds a ‘1’ to allow unnormalized numbers.   
The last set of registers is called branch registers.  The IA-64 has 8 branch registers that hold the address of the next line of code in memory that will be executed.  The branch instruction includes a branch register that is passed as an argument to transfer control from one location of code to another.  The IA-64 can not get this address from a general purpose register, or find it in the main memory; it has to be stored in one of the 8 64-bit branch registers first.  The only exception to this rule is when referencing memory relative to the instruction pointer. 
At least 5 CUPID registers that contain information about the system.

Also there are 64 1-bit predicate registers used to determine the outcome of conditional statements.  p0-p15 are static, p16-p63 are dynamic.
Predicate registers are used to control branches in code that slow execution down dramatically.  Intel estimates that 20%-30% process performance is wasted on branch mispredictions.  For instance, let’s consider an if-then-else statement.  After coming across an IF statement, we can wait until the IF statement is evaluated and then fetch the next segment of code that needs to be executed, at a great time cost, of course.  Or, we could try to guess what branch is going to be taken, and load that code.  If we guess right then we have lost nothing, but if we guess wrong, we run into the 20%-30% wasted process time reported by Intel going back and loading the correct data.  To alleviate this slow down, the IA-64 uses predication.  Instead of trying to guess which branch to take the IA-64 takes them both.  By using parallel processing, when the IA-64 encounters an IF statement, the code for the THEN and the ELSE are both loaded and processed in parallel, and the results are flagged.  When the outcome of the IF is computed it gets a flag, then CPU chooses which branch that gets thrown out by the status of the flag it sets according to the outcome.  The IA-64 has 64 1-bit predicate registers to hold flags of this type.  By loading, and executing, all of the possible outcomes, the IA-64 is much faster than the pervious CPU’s created by Intel.  However predication and fast registers are not the only tricks Intel incorporated into the CPU to make it fast, the IA-64 can also execute instructions in parallel. 

EPIC technology also uses parallelism whenever it is possible.  If there are 4 additions that need to be preformed and they don’t rely on each other, then they should be done at the same time.  During the compile stage, the compiler will try to determine what computation can be done in parallel.  If the outcome of one computation is not dependant on the other, it is safe to do these computations at the same time.  So, the complier checks for dependencies and “bundles” these types of instructions together, so the code can be executed in parallel.  But, if the CPU can only do one thing at a time, what is the advantage of “bundling” code to be executed in parallel?  The IA-64 is a superscalar machine, and superscalar machines have functional units. 

Functional Units can be thought of a funnel.  If you pour milk and water in the top, you should get a mixture flowing out of the funnel.  Functional Units can be thought of as a funnel used for integer calculations, in addition, some are used for floating point calculations.   The CPU “pours” a couple of integers in the top of a functional unit, and the integers are “mixed” (added, subtracted, multiplied, divided, etc.) and fall out the bottom.  A functional unit can complete its operation independent of other calculations going on within the CPU, so multiple functions can be carried out at the same time. If a functional unit is going to add two integers, one of the functional units is selected and the integer representation come for the CPU’s registers, funnel trough the functional unit, and then the answer is sent back to a register. 
In general the Itanium 2 has more functional units than the Itanium

The Itanium 2 has 6 general purpose arithmetic logic units (ALU), used for arithmetic operations, compares, shifts, and most types of multimedia instructions.  The Itanium can perform 6 of these types of operations per cycle.  The Itanium has 4 memory modules that will allow at most 2 integer reads and 2 integer writes per cycle. There are 6 specialized multimedia functional units that perform specialized operations like parallel shifts, parallel multiplies, and population counts.  There is also a functional unit that will allow one floating-point instruction per cycle.  

Unfortunately, there is a potential bottleneck in this system.  Parallel instruction groups may extend over an arbitrary number of instructions, and if the Itanium’s resources are exceeded, a break in the parallel instruction set will occur.  The front-end pipeline can fetch 2 bundles per clock cycle, and issue 2 bundles per cycle, each bundle containing 3 instructions for a total of 6 instructions per cycle.  So, if the instructions contain 6 adds, the Itanium will perform all of these instruction in one clock cycle, however if the instruction contain 4 add, and 2 floating-point operations, a break will occur, due to the fact that there is only one floating-point functional unit on the CPU.  However, in the future if more functional units are needed, the IA-64 is designed in a modular way to accept more functional units on the chip as the need arises.  Adding hardware in the future is fine, but the IA-64 has the problem of starving itself of data.  In an attempt to eliminate this starvation, the IA-64 uses speculation.
Speculation is used to try to eliminate memory latency.  With CPUs running multiple instructions at once, and functional units doing mathematical operations in parallel, there is a spectacular amount of information that needs to be moved from memory to the CPUs registers, and it becomes very apparent that the CPU can do more work, and crave more data than the memory can keep up with.  Let’s think about a jump in the program execution.  The CPU is doing its thing when it encounters a jump to a new subroutine.  At this point a whole bunch of loads must be done, and while this is taking place, the CPU is doing nothing, but waiting.  EPIC uses a technique called speculative loading, or speculation, to reduce the effects of memory latency.  If we could look ahead a few instructions and try to load the registers with information ahead of time, then the CPU could use that information when it needs it, and not have to wait for the time consuming memory loads.  This look ahead loading is referred to as load hoisting and will use the vacant execution slots to load data ahead of time, thus reducing the time the CPU sits idle.  The whole idea is to keep the CPU fed with information so it can do its job, and if it has to wait for memory transfers, its efficiency is reduced.  There is a drawback however.  What happens if the data loaded into the registers ahead of time is changed in memory before it is used?  This is referred to as an exception.  The IA-64 uses a speculative check method to alleviate exceptions by loading an exception load instruction with the data in the register.  So, when the data is needed the IA-64 checks to see if the data has changed in memory by referring to the exception load instruction.  If the data has not changed in memory, the CPU is free to use it, quickly.  If not then a new fetch instruction must be issued.  Load hoisting is a great way to increase performance, but how is all this parallel processing accomplished?    
Reflecting on how code is generated, programmers write sequential code that solves a problem, and then during the compile step, it is reformatted in a way to incorporate parallelism.  Loops are unraveled, dependencies are identified, and a reorder of the code is initiated to take advantage of the parallel processing, and then the compiler tries to write code that again is sequential, hoping that the CPU will again find the parallelism and execute the code in parallel at run time.  The extra CPU time it takes to try to identify code that can be run in parallel, and the extra circuitry it takes to identify this code is immense.
To avoid this extra processing, the IA-64 gives the job of hunting for parallelism in the code to the compiler.  The compiler will check the code for dependences, move the code around, and then packs it in to 128-bit bundles that can be executed safely in parallel.  These 128-bit bundles contain 3 instructions and a set of template bits that tell the CPU what dependencies the instructions have with one and another so the instructions can be fed to the functional units for processing.  Because the compiler has identified the code that can be run in parallel, the CPU doesn’t have to find it on the fly, and therefore, can concentrate on pushing the bundles through the functional units as fast as possible.  
In conclusion, compliers, speculation, functional units, and predication are some of the big issues discussed that make the Itanium a very speedy processor.  Unfortunately, the processor is still only used in high-end servers that, at present, are possibly too expensive for the individual user.  Dell stopped assembling the Itanium equipped workstation 730 in January after only selling 1,700 Itanium based workstations in the first year.  The IA-64 being a new architecture requires customized operating systems and application programs and that may have reduced the excitement of this processor.  In addition after several months, Compaq was held up in delivering its Itanium based servers for undisclosed performance problems that were blamed on the processor.  It is yet to be known if the Itanium can compete with the established 64-bit processors that are thriving today.  As with most things, only time will tell.
Bibliography

Murdocca, Miles J. and Heuring, Vincent P. (2000).  Principles of Computer Architecture.  Upper Saddle River, NJ:  Prentice Hall. QA76.9.A73 M86 2000; ISBM 0-201-43664-7

Intel. (unknown year). “Intel Itanium Processor at 800MHz and 733 MHz Datasheet” URL: ftp://download.intel.com/design/Itanium/Downloads/24963402.pdf
Jarp, Sverre. (1999). “IA-64 architecture: A Detailed Tutorial” URL: http://sverre.home.cern.ch/sverre/IA64_1.pdf
Intel. (1997) “The next generation of Microprocessor Architecture: A 64-but Instruction Set Architecture (ISA) Based on EPIC Technology” URL: http://www.intel.com/pressroom/archive/backgrnd/sp101497.htm
Hannibal. (unknown year). “A preview of Intel's IA-64” URL: http://www.arstechnica.com/cpu/1q99/ia-64-preview-1.html
Pietrek, Matt. (2001). “IA-64 Registers” URL: http://msdn.microsoft.com/msdnmag/issues/01/06/Hood/Hood0106.asp
Popovich, Ken. (2001) “Dell to Discontinue Itanium Workstation” URL: http://www.eweek.com/article2/0,3959,218512,00.asp
PAGE  
4

