

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux

by

Charles Abzug, Ph.D.
Department of Computer Science

James Madison University
701 Carrier Drive

Harrisonburg, VA 22807

Telephone: 540-801-8746
http://www.cs.jmu.edu/users/abzugcx

abzugcx@jmu.edu

http://www.cs.jmu.edu/users/abzugcx
mailto:abzugcx@jmu.edu

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux

OUTLINE

1. OVERVIEW
a.. What is an Operating System?

The View of the Computer System
The View of the User and of the Programmer
Design Goals for an Operating System
Operating Environments

b What Linux Is All About
c. Why Linux Is Important, and Why It Can Be Useful to You
d. The Future of Linux

2. HISTORY OF LINUX

a. MULTICS
b. UNIX
c. Richard Stallman, the Free Software Foundation, and the GNU Project
d. Andrew Tanenbaum and Minix
e. Linus Torvalds and the Initial Development of Linux
f. Why Is Linux So Much More Popular than its Progenitors?
g. Origin, Appropriateness, and Proper Pronunciation of the name Linux
h. GNU and “Copyleft”, and their impact on the evolution of Linux
i. Worldwide Cooperation and Support: a Grassroots Movement

3. HARDWARE ARCHITECTURES SUPPORTED

4. DISTRIBUTIONS OF LINUX AND VENDOR SUPPORT

5. EXTENDING YOUR KNOWLEDGE ABOUT LINUX

6. ACKNOWLEDGMENTS

Introduction to Linux, by Charles Abzug

iii

Version: 15 May 2002, revised 01 Oct 2002

GLOSSARY

application software: programs usually of commercial origin that effect the end-goals of the user.

architecture: the fundamental design structure of a computer system.

assembly: the process of generating, from a computer program written in assembly language, a list of

machine-language instructions. Cf. compilation.

assembly language code: source code that bears a one-to-one correspondence to the hardware

instruction set of the computer. Cf. executable code.

batch job: a task requested to be accomplished by the computer, which can be executed without any

further input from or interaction with the user.

Command-Line Interface (CLI): a facility for the user to communicate his wishes to the computer by

typing specific commands a line at a time. Cf. Graphical User Interface (GUI).

compilation: the generation, from a source code program written in a High-Level Language, first of an

assembly-language program that describes how the High-Level Language instructions are to be
implemented as a sequence of machine language instructions specific to the hardware of the
physical computer, and then the machine language instructions corresponding to the intermediate
assembly language expression of the program. (NOTE: Ssometimes the machine-language
instructions are produced directly by the compiler, bypassing the assembly-language step. Cf.
assembly.

device: a physical apparatus that is part of the hardware of a computer. Usually, a device either stores

data on a computer in form sufficiently robust that the data are retained even if the electrical
power is turned off, or mediates in the transmission of data between the computer and the
external world.

disassembly: a process by which a set of executable machine-language instructions is analyzed and

rewritten as a list of assembly language source code instructions. Cf. assembly.

executable code: a list of instructions both written in machine language and also containing all memory

locations explicitly specified, and therefore directly executable by the computer. Cf. source code
and machine code.

Graphical User Interface (GUI): a facility for the user to communicate his wishes to the computer

principally by pointing with an appropriate device and in a designated manner either to pictorial

Introduction to Linux, by Charles Abzug

iv

Version: 15 May 2002, revised 01 Oct 2002

elements displayed on an appropriate two-dimensional surface or to lists (menus) of various
options appearing on the display medium. Cf. command line interface (CLI).

kernel: the portion of the operating system that must reside continuously in the primary memory of the

computer from the time of completion of boot-up until system shutdown.

machine code: a program expressed as a list of machine instructions directly executable by the

computer, except that some of the references to memory locations might not yet be completely
specified. Cf. source code and executable code.

multi-tasking: an environment in which several tasks can be executed concurrently on behalf of the

computer user, exploiting time periods when one task must remain idle while waiting until a
critical event occurs until that task can be resumed, and performing other tasks in the meantime.

multi-user: an environment in which a computer system can serve the needs of several users

concurrently by interleaving the execution of tasks for different users.

open-source: a special program development environment in which, in contrast to the commercial

software environment, the source code for the software is freely distributed, thus enabling the
user community freely to modify the software either to fix bugs in the code or to enhance or alter
the functionality of the software to meet the individual needs of different systems.

portability: the ability of software originally written with the intention of being executed in a particular

hardware-combined-with-operating-system environment, known as a platform, to be transformed
and transported for execution on a different hardware platform.

real-time: a relatively unusual environment in which a computer system operates under defined

constraints for responding to specific external events. For example, a collision warning system
in an airplane must generate a warning and deliver it to the pilot sufficiently speedily as to enable
him to take appropriate action to avoid the impending collision. In a real-time system, the
issuance of an error message instructing the user to close down some applications in order to free
up excessively encumbered memory space is usually precluded.

shell: a particular Command-Line Interface having explicitly defined properties. Shells available in the

Linux environment include the Bourne Again Shell (bash), the TC Shell (tcsh), the Z shell (zsh),
and the Korn shell (ksh), and generally contain facilities for program-like operations.

shell script: a file containing a sequence of commands addressed to the operating system that facilitates

the repeated execution of the included commands without their having to be laboriously retyped
each time they are executed.

source code: a complete list of instructions that describes how a computer program is to be executed,

written in a precisely defined programming language that is relatively easy for a human reader to

Introduction to Linux, by Charles Abzug

v

Version: 15 May 2002, revised 01 Oct 2002

understand, yet is also readily converted by appropriate special software into a set of machine-
language or executable instructions.

utilities: software provided together with the operating system which provides commonly-used

functions that can greatly enhance the ability of the computer system to provide service to the
user.

Introduction to Linux, by Charles Abzug

vi

Version: 15 May 2002, revised 01 Oct 2002

ABSTRACT

The Linux operating system occupies a special position in the world of Computer Science.
Unlike the great majority of operating systems, which are produced by commercial developers and sold
at a profit, Linux is produced and maintained by a coterie of enthusiastic volunteers, and is distributed
with no license fees whatsoever. It is available in several versions that run with nearly identical look
and feel on a diverse group of hardware platforms. Linux is famed both for its stability and for its
efficiency, often running for months, or occasionally years at a time without having to be rebooted,
while also achieving excellent performance. It conveys many of the properties of UNIX that have made
that operating system extremely popular among Computer Science professionals. Linux source code is
as freely available as the executable code, thus giving users complete freedom to modify and adapt the
operating system to the special needs of their systems. Linux maintains the tradition of openness and
voluntarism that originally characterized the UNIX world, while at the same time avoiding the
concomitant fragmentation experienced by UNIX into a variety of dialects. Linux is likely to continue
to increase in importance.

Introduction to Linux

1. Overview

Linux is probably the best all-around operating system in use in the world today. Linux
has a number of competitors, most of which are commercial products, like Microsoft Windows in
its various manifestations, IBM’s OS/2, Sun Microsystem’s Solaris, SGI’s Irix, and Novell’s
Netware. In contrast to these other operating systems, the development of Linux is carried out
not by paid employees operating in an industrial environment, but rather by a small army of
dedicated and enthusiastic volunteers, many working evenings and weekends during their spare
time. Both the mode and the culture within which Linux was nurtured are responsible in large
measure for the superiority both in usability and in performance attained by this operating
system. In order to explain this attainment by Linux over its rivals, it is necessary first to
describe what is an operating system and what is the role of the operating system in the
functioning of a computer. In addition, it is necessary to convey the uniqueness of Linux in
terms of both how it was originally developed, as well as how it continues to evolve.

a. What is an Operating System?

The operating system is the most important piece of software in a computer. There are
two principal points of view for looking at an operating system, that of the computer system and
that of the user and programmer.

(1) The View of the Computer System: From the point of view of the computer
system, the operating system is the software responsible for mediating the control of all three
families of the computer’s resources: hardware, software, and data. The hardware resources
controlled by the operating system include one or more Central Processing Units or CPUs, the
main memory (often referred to as Random Access Memory or RAM), the keyboard and display,
and also any devices that may be present. These devices include communications facilities, such
as a network card or modem, as well as all storage devices, including magnetic disks (“hard”
disks, floppy disks, and various proprietary removable disk cartridges, such as Zip, Jaz,
Bernoulli, etc), CDs or DVDs, and tape drives. Software resources of the computer include, in
addition to the operating system itself, a variety of utilities that may be bundled with the
operating system by the vendor, as well as any separate commercially purchased or custom-
programmed software applications. Applications software, at a minimum, on a computer
intended for use as a personal workstation usually includes a word processor, E-mail handler,
spreadsheet, web browser, and database manager. Applications software on a server may include
a robust database manager specifically designed for simultaneous access by multiple users, or
some other heavy-duty application. In a corporate environment, computers are typically
purchased en masse, and both the hardware configuration and the installed software are usually

1

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

identical or nearly identical for a group of desktop systems purchased together as a single
purchasing action by a commercial or governmental organization. The data resident on each
system, however, are what distinguish that system from all others that may be otherwise
identical. The data make each computer different from every other system in the organization.
Thus, in summary, the operating system is the highly complex software that controls all three
types of resources of the computer: hardware, software, and data.

The operating system is much more, however, than merely the manager of the resources

of the computer system. In addition to mediating the control of the disparate resources of the
system, the operating system also provides the interface with which the user interacts with the
computer, both to pass on the expressed wishes of the user to the computer and to communicate
to the user information about what the system is doing, as well as reports regarding the status of
requests made by the user, and warnings and messages regarding errors and malfunctions that the
user needs to know about.

(2) The View of the User and of the Programmer: So far, we have considered the

operating system principally from the point of view of its role in controlling the computer. The
other point of view is that of the user or of the programmer. There are several services that are
provided both to the user and to the programmer by the operating system. These include:

1. execution of programs at the user’s request;
2. performance on behalf of the program of input/output operations, thus saving the

programmer from having to program such operations in detail;
3. interaction with devices, thereby relieving the programmer of having to program

in detail in accordance with the needs of the individual device;
4. reading and writing of files of various types;
5. handling of communication from the user to the machine, typically via either a

Command-Line Interface (CLI) or a Graphical user Interface (GUI);
6. communication between processes;
7. detection and reporting to the user of errors occurring in system operation;
8. communication to the user of status reports, including report of the successful

completion of tasks requested by the user;
9. a set of rules for writing function or subroutine calls that can be invoked from an

application program and that are carried out on its behalf by the Operating
System (Application Programming Interface, or API);

10. provision of an environment conducive to the development by programmers of
application programs to carry out useful work on behalf of the user, as well as
to the testing, debugging, and maintenance of application programs.

Design Goals for an Operating System: There are four principal goals that the

developer has to meet in the design of the operating system. First among these is efficiency of
use of the resources of the system. The resources of the computer system are expensive, and the
user therefore is eager to see the resources put to use efficiently, as well as to get his work
accomplished in a timely manner. Second in importance is ease of use of the system. Users
come in a great range of levels of sophistication of computer skills. The entire spectrum of

2

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

users, from the almost totally computer-illiterate to the most highly skilled computer
professional, should all be able to exercise an adequate level of control over the operation of the
system so as to obtain from it a high level of service. A third goal is that the resources of the
computer system be adequately apportioned to the various tasks to be accomplished so that each
task progresses at a speed and efficiency appropriate to its importance relative to other tasks. In
particular, if two or more users share the machine, then each user must be allocated an
appropriate share of each of the various resources of the system. Finally, the security needs of
the system must be adequately addressed. This last concern is particularly important for a
system whose use is shared by multiple users.

Operating Environments: There are several different environments in which computer
systems function. In extreme circumstances, a particular environment may require the services
of a special-purpose operating system whose design is optimized to serve the special
environmental needs of that system particularly well. In most cases, however, a general-purpose
operating system can be developed which meets the needs of a broad range of uses and that
includes sufficient flexibility to enable the system manager to configure the system on
installation to meet the operational needs anticipated for that particular system. A good general-
purpose operating system will also provide a range of facilities and services which can be
adapted and tuned as necessary so as to enable the system to continue to meet the needs of its
operational environment even as these needs change over time.

Broadly speaking, the operational environment of a computer system falls into one of

three categories. The simplest environment is that of the single-user-at-a-time. Most desktop
computer systems, including those of higher-performance capability also known as workstations,
fall into this category. The old DOS that came with the original IBM PC (IBMDOS) as well as
with most PC clones produced by other manufacturers (MSDOS) was a single-user operating
system. DOS was not only a single-user, but also a single-tasking operating system. That is, the
user could have the computer do only one thing at a time. The user had to wait until the current
task was completed before assigning a new task for the system to accomplish. Single-user
operating systems with more sophistication were developed that allowed the user to initiate
several tasks that ran concurrently, thus allowing the more efficient use of computer resources.
When a disk read or a disk write operation is required, for example, it is usually necessary for the
read/write head of the disk drive to travel to some location overlying one particular circular track
selected from the many that exist on each of the disk platters. This operation, known as a disk
head seek, is incredibly slow by computer standards, occupying an amount of time in which the
CPU, were it free and unencumbered, could perform thousands or even millions of operations.
Thus, while the disk drive is executing its head seek, the CPU could be either doing something
else for the same task that is not dependent upon completion of the disk read or write operation,
or else it could work on a completely different and unrelated task. In an old-fashioned single-
tasking system, this does not happen, however. Instead, the CPU waits for the disk read or the
disk write operation to complete, and only then does it resume operation. In the large-scale
computer (minicomputer or mainframe), multi-tasking operating systems were developed as
early as the 1960s. At the smaller scale of the personal computer, several operating systems
were also developed in the 1980s that enabled the single-user microcomputer also to do multi-

3

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

tasking. These included the operating system for the MacIntosh, known as MacOS®, and several
variants of Microsoft Windows®, as well as IBM’s OS/2®. Several UNIX variants were
developed for the PC as well, which were even more capable.

Next in complexity, after the single-user multi-tasking environment, is the environment

characterized by multiple simultaneous users. This environment is characteristic of most mini-
computers and mainframes, as well as of servers. Operating systems that have facilities that
enable their use in a server or multi-user environment include the server versions of
WindowsNT®, Windows2000®, and WindowsXP®, also Novell Netware® the server version of
IBM’s OS/2®, DEC’s VMS®, various mainframe operating systems, and a host of proprietary
variants of the UNIX® operating system, including IBM’s AIX®, Hewlett-Packard’s HP-UX®,
Silicon Graphics’ IRIX®, and HP-Compaq/DEC’s Ultrix®.

Historically speaking, one of the earliest capabilities to be developed in operating

systems was the ability to handle batch jobs. This development took place prior to the
development of multi-user, multi-tasking operating systems. In a batch environment, one or
more tasks are submitted to be run on the system. Each of these runs to completion, and the
results are collated and left for later, off-line examination by the user. Modern systems with
multi-user, multi-tasking capability may also be provided with the capability to run batch jobs.
Usually, the tasks submitted as batch jobs have no need for ongoing monitoring or supervision
by the user. Examples of such jobs are regular, complete system backups, and periodic scanning
of the entire system for computer viruses. Such a job can either be scheduled to run at a time
when the user is not present, so as not to compete for system resources with tasks of greater
urgency, and thus interfere with the performance of those tasks for which the user is anxiously
awaiting results. Alternatively, the batch job can be run in background at a reduced priority
level, so that it runs only when a task to which the user is attending will not be slowed or
delayed. Operating systems that are in the more robust category often have the capability to run
batch jobs, in addition to handling multiple tasks and multiple users.

Finally, there is the real-time environment, where the computer is used to control

something whose on-time performance is critical. Examples of real-time environments include
the flight-control and navigational computers of aircraft and spacecraft, various military
environments, such as the command and control computers used in single-vessel as well as
integrated fleet defensive systems, like the U.S. Aegis system, aircraft and anti-missile weapons-
systems control computers, like the U.S. Patriot anti-aircraft and anti-ballistic-missile system,
systems used in medical diagnosis and treatment, systems used in factory or shop floor
automation, including robotics, large-scale distributed computer systems used to control
transnational telecommunications systems, and the computers used to control nuclear power
plants. In several of these cases, a general-purpose operating system can be used that provides,
besides the multi-user and multi-tasking features found in many modern operating systems,
additional facilities suitable to the more exacting needs of a real-time environment. However, in
those instances where the real-time needs are particularly severe, only a special-purpose
operating system will do. Under such extremely constrained circumstances, it is usually cost-

4

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

effective to have a dedicated, special-purpose computer that does nothing else but see to the
needs of the so-called hard real-time environment.

b. What Linux Is All About

Linux is a UNIX-like group of operating systems, which was developed as a cooperative
effort by a loosely knit team of capable and enthusiastic programmers who volunteered their
services. The programmers on the original development team were associated with the Free
Software Foundation’s GNU project. The activities of programmers working on the GNU
project were augmented by Linus Torvalds and a small number of associates working with him.
This latter group contributed the operating system’s kernel. The name Linux, which properly
applies to the kernel alone, is derived from Linus Torvalds’ first name. The Linux kernel was
originally targeted at the Intel x86 family of processors. However, it now comes in several
varieties, each of which runs on a particular hardware platform. The various incarnations of the
kernel intended for the different hardware platforms are all integrated with the pre-existing GNU
software to form a complete operating system. Quite a number of hardware platforms are
currently supported. The various members of the Linux family are all multi-user, multiple-
concurrent-process operating systems featuring time-sharing, but also supporting batch
processing in background. They differ from each other only in whatever way is necessary to
support the particular hardware architectures on which they run. The look-and-feel of all these
systems is very similar.

Linux is open-source software. The source code is bundled together with the executable

code and the documentation, and all can be had without charge. Should the user require the code
and manuals on CDs, then these are available for purchase at a very modest charge to cover the
media, duplication, packaging and distribution costs only. The software is universally usable by
anyone for any purpose with absolutely no licensing fees.

The Linux user is free to modify any or all of the source code, and then to recompile the

modified code, to meet the needs of his system. If the modification is potentially of use to other
members of the Linux community, then he is encouraged to share with the community the
changes made. Furthermore, anyone at all who enhances the software is welcome to distribute
the enhanced version, provided that the provisions of the GNU General Public License are
upheld, preserved, and transmitted onwards together with the new code and documentation, thus
preserving the users’ freedom to read, study, modify, and enhance the software.

c. Why Linux Is Important, and Why It Can Be Useful to You

The importance of Linux is due to a number of factors. Some of these are technical and
some are non-technical, particularly related to the Linux culture.

5

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

(1) Performance and efficiency are superb. In particular, users who find themselves often

frustrated by the notorious hourglass encountered in the various Windows environments
find themselves warming up to Linux as they see a snappier and more responsive system.

(2) Reliability is certainly among the best in the industry. Linux systems are extraordinarily

stable, with several server systems known to have been running continuously for several
years without ever having to reboot. There is an organization called “The Linux
Counter” (URL: counter.li.org), which encourages Linux users to register as well as to
provide information voluntarily regarding their installation of Linux, and especially its
performance. The data displayed recently show that there is one machine that has been
running Linux continuously for 1000.3 days (i.e., nearly three years). This machine
happens to be not an Intel architecture machine, but a Hewlett-Packard/Compaq/DEC
Alpha. However, there is a list of the top ten machines reported to be up continuously on
Linux, and the other nine, all of which consist of Intel hardware (one 80486 and the rest
in the Pentium family) have all been running for more than 500 days. In fact, the average
running time reported for Linux is an astounding 37.7 days. The contrast between the
ultra-high reliability of Linux and the frequently appearing “blue screen of death” of the
Windows world is particularly striking.

(3) Linux complies with the Portable Operating System Interface Standard (POSIX). More

than 95% of the code is written in the programming language C, and thus it can be ported
relatively readily to any new hardware architectures that might be developed.

(4) Linux already runs on a huge variety of hardware, ranging from desktop systems to

mainframes (details presented below). Over the entire range of hardware supported, there
is a consistency both of user interface and of programmer interface. Thus, the user does
not need to learn a new operating system when switching to a new hardware platform.

(5) There is a standardized structure to the Linux file system, which results in a uniform

location of critical files over both different hardware platforms and different Linux
distributions. The Linux community recognized relatively early on that the originally
different file structure used by the various vendors in their Linux distributions was
chaotic, and so a FileSystem Standard (FSSTND) was developed to bring the situation
under control. Subsequently, a superior Filesystem Hierarchy Standard (FHS) replaced
FSSTND.

(6) Development and evolution is vastly different for Linux from what it is for proprietary

operating systems. Since they are volunteers, Linux developers do not have to answer to
either a marketing department or a profit-oriented corporate bureaucracy. A proposed
change or a reported software error is posted by the interested party on the Internet,
where it is likely to be seen very quickly by any number of Linux enthusiasts. If one of
them deems it to be worthwhile, then either the change is implemented or the bug gets
fixed, whichever is applicable, and detailed information on the change is then also posted.

6

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

There is a spirit and a culture of cooperation, and therefore anyone who programs an
improvement in the code, even though primarily intended for his/her own private use,
will usually also post it on the internet so that other users may also benefit from it if they
wish. All of the improvements are then collated for integration into the next release of
the kernel software. This is in marked contrast to the philosophy encountered in the
commercial software-development world, where the attitude taken towards the users is
typically, as described by Richard Stallman (2001, page 1), “If you want any changes,
beg us to make them.” In addition, in the commercial environment users must often pay
for upgrades with no assurance that the bugs that they have reported have already been
fixed rather than still sitting in the queue waiting to be worked on.

(7) New modules can be linked in to the kernel, and old modules de-linked, while the system is

running. In most cases, it is not necessary to bring down the system for reboot.

(8) The operating system is highly flexible in use. The user can exercise a high degree of

control from a single window over several jobs, including both foreground and
background processes.

(9) Linux incorporates features of both major streams of the UNIX world: AT&T UNIX and

Berkeley Standard Distribution. For example, there are several shells (command-line
interfaces) available under Linux. The first popular UNIX shell was the Bourne Shell.
The “Bourne Again Shell” (bash) is an improved version of the original UNIX Bourne
Shell from AT&T UNIX. The developers of Berkeley UNIX produced the “C Shell”,
which differs in several key aspects from the earlier Bourne shell. Linux offers the TC
Shell (tcsh), which is an improvement on the C Shell. The “Z Shell” (zsh) is a hybrid,
and contains several features of both bash and tcsh, and of the Korn Shell as well.
Several additional shells are also available. Some of the more valuable facilities that
were once unique to one or another of the primordial shells have now been incorporated
into one or more additional shells, thus to some extent reducing the differences among
them in facilities offered. For example, the C Shell of Berkeley UNIX introduced a
history facility, which had not been present in the original Bourne Shell. History retains
some number of most recently issued commands. The retained commands can then be
re-executed, either in the identical form to which it had originally been issued, or in
altered form. Bash incorporates a history facility, thus in some small measure reducing
the number of features that distinguish bash from tcsh. While the facilities that originally
distinguished certain shells have been incorporated under Linux into other shells, as well,
thus diminishing the uniqueness of the feature set offered by each separate shell,
nevertheless the original differences in command syntax between the various shells have
been retained.

Several additional UNIX features are also supported by Linux. Redirection of both input
and output is a simple means of executing a program and providing the input from a file
instead of from the console or standard input device (keyboard), and of having the
program’s output written to a file instead of to the standard display device (usually either

7

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

a video display tube or a flat-panel liquid-crystal display). Many other operating systems
also allow input and output to be redirected to files, but redirection in other operating
systems can be a cumbersome affair (e.g., in VMS). Filters are also prevalent in Linux,
as they are in UNIX. These are programs that are designed specifically to process a
stream of input data and to produce a stream of output data. Filters often intervene to
process output data from one program before the data are input into another program.
Linux also supports both hard links and soft links to facilitate the sharing of files. A hard
link points to the file’s physical structure on the disk, whereas a soft link connects
references the file through the directory structure. A large number of UNIX utilities are
also supported. These include about 15 extremely helpful utilities that support either
simple tasks, including date (writes the current date and time to the standard output
device), echo (specifies a text string to be written to the standard output device), and
lpr (sends a file to te printer), or routine file manipulation and disk management tasks,
including cat (concatenates files, and displays the concatenation on the standard output
device), cd (changes the present working directory to a specified new location),
chgrp (changes the group ownership associated with a specified file), chmod (changes
the permissible access mode for a file), chown (changes the ownership of a file), cp
(makes a duplicate copy of one or more files, either in the same directory or in a
different, specified directory), df (prints on the standard output device either the number
of free disk blocks or the size in kilobytes of the free disk space, and the number of free
files), dd (copies files between devices, converting between different block sizes when
so specified), ln (creates either a hard link or a soft link to a file), ls (lists the contents
of a directory), mkdir (creates a new directory), rmdir (deletes specified directories),
mv (moves and renames files and directories), and umask (sets the default access
permission bits for all subsequently newly-created files and directories). There are also
several well-known complex or special-purpose utilities. These include awk and
grep, which are used for searching for patterns in a file, sed (a batch editor),
finger, which provides specific information regarding authorized users of the system,
make, which is used principally to update a set of executable programs after
modifications are made to the source code, and pine, which is used both to receive
and send news and e-mail.

(10) Shell script is the term used in the UNIX culture to denote what is usually termed a

command procedure in other operating systems. A command procedure or shell script is
a list of operating-system commands that may contain program-like features. If there is a
distinct ordered list of operating system commands that the user needs to execute
repeatedly, for example, immediately after every login or immediately before every
logout, then most operating systems have a facility for recording the list of commands in
a file, which can then either be executed automatically upon login or logout, or can be
invoked by the user through the issuance of a single command that results in the
execution of the entire contents of the batch file, which can contain as few as one
operating system command or as many as thousands. In most cases, both interactively
typed operating system commands and pre-recorded batch command procedures (like the
*.bat files of MS-DOS/PC-DOS and the *.cmd files of Windows) are executed through

8

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

interpretation. That is, each command in turn is examined, parsed, and translated in turn
into a series of executable machine instructions. Several of the Linux shells, however,
provide a facility for the user to write command procedures called shell functions, which
are retained in memory in partially parsed (preprocessed) form. This allows the
command procedure to be executed more speedily when called, as it is not necessary to
do all of the work of parsing every time the command procedure is executed. Note that
the shell function can be stored in memory either in bash or in zsh. In addition, zsh has a
facility called autoload that allows the user to specify a shell function which is not
immediately loaded into memory but is, instead, stored on disk, thereby economizing in
the use of memory. Only when the shell function is actually invoked is it copied from
disk to memory, thus economizing both in the setup time and in the encumbrance of
memory, which can be significant if there are many shell functions that are seldom used.

(11) Additional features from the UNIX world that are supported in Linux include two very

powerful editors, vi and emacs, as well as a wide variety of utilities.

(12) Support is provided for a huge variety of peripheral devices and adapter cards.

(13) Ample tools and facilities are provided for software development, including, in addition to

make, the Concurrent Versions System (CVS), and the Revision Control System (RVS).
These utilities are very useful not only for developing new software, but also for taking
existing software and both configuring and installing it to run, either on a different
hardware architecture, or even on a different operating system.

(14) Several emulators are available to enable the running of programs designed for other

operating systems. The operating systems supported include MacOS for the MacIntosh
(executor), the old DOS operating system that ran on the early Intel hardware (dosemu),
the Windows environment (wine and wabi), several flavors of UNIX, including AT&T’s
System V Release 4, the University of California at Berkeley’s BSD, and Santa Cruz
Operation (SCO) UNIX. In addition, GNOME and KDE provide Windows-like
environments for running modern Windows applications under Linux, and Plex86,
distributed by Debian, allows other operating systems designed for the Intel 80x86
hardware environment to run under Linux on Intel 80x86 hardware. There is also a
commercial product called VMWARE that comes in versions that allow other operating
systems to run under Linux. Note that several of these operating-system emulators
require licenses as well as executable code for the operating system environment that is
being emulated.

Note that Linux is currently reported as being installed and used in a total of 183 distinct

countries, pseudo-countries, and other geographical areas, such as the Faeroes Islands
(counter.li.org). The total number of users is currently estimated as being somewhere between 3
million and 24 million, with a “best guess” of 18 million (counter.li.org/estimates.php).

9

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

d. The Future of Linux

At present, there are two principal factors limiting the expansion of Linux. First is the
limited number of mainstream software applications that run under Linux. In the words of Linus
Torvalds (foreword to Sobell, 1997), “Linux has the same problem all other operating systems
have had: a lack of applications. . . In order to be a real driving force, Linux needs to have
more applications, and those applications need to be readily available with wide distribution and
low price.” However, he is optimistic regarding the future, as he also states, “So far Linux ports
of various applications have followed DOS/Windows pricing (less expensive) rather than the
UNIX pricing (more expensive), so I’m reasonably hopeful we can have the types of applications
that will help Linux grow.” In fact, several vendors have released versions of their mainstream
applications ported to Linux. The number of such applications is still modest, but is growing.

The other major factor limiting the expansion of Linux is the natural hesitancy of

corporate IT managers to rely upon major software that is not a product of a monolithic
“reputable” vendor. The corporate world feels more comfortable when dealing with entities that
can be sued if something goes wrong with the software. The Linux culture doesn’t fit into the
corporate mold. Some IT managers, nevertheless, have listened to their technical experts and
have taken the leap to Linux. There is a modest, but growing foothold occupied by Linux in the
commercial world. Augmenting this process are two packages that allow Windows applications
to run under Linux: KDE and GNOME. Unfortunately, not all Windows applications run
successfully in one of these environments. If either of them should develop to the point where
nearly everything runs, or if a new windowing environment for Linux were to appear
incorporating an improvement in functionality providing universal compatibility with all
Windows applications, then that could have a major impact in expanding the acceptance of
Linux.

Where will Linux be in another year; or in two, five, ten, or 20 years? Prediction is a
notoriously unreliable endeavor in the computer industry, probably even more so than in general
society. The further out we look, the harder it is to predict with any level of accuracy. For
example, Bill Gates is supposed to have declared in 1981 that 640 kiloBytes is as much memory
as anyone would ever need. In addition, it is said that Ken Olson opined in the sixties or
seventies that there would never be computers in individual households. These are both very
intelligent people who each possessed an excellent grasp of the computer industry at the time
they made the pronouncements for which they are famous. The reason that their
prognostications were so far off the mark is that developments took place in the industry that
were simply unpredictable at the time they spoke. As a rule, the shorter the outlook the more
straightforward it becomes to make a credible prediction. Looking at Linux, certainly in the
short term, that is, for the next one or two years, we can expect to see continued growth at a rate
comparable to what has occurred in the past few years. Linux enthusiasts expect and hope that
this growth will continue beyond the immediate future into the medium-term and far-term future
as well. While there are some who expect Linux eventually to unseat Windows from its current
position of industry dominance, a more balanced view would not consider that to be a high-
likelihood event. The basis for the expectation of accelerated growth is the expected

10

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

continuation of at-best mediocre performance, insufficient reliability, and erratic operation of
Windows, coupled with the traditionally sluggish responsiveness by the Windows software
vendor in the fixing of bugs. This latter, in particular, is generally thought to be due perhaps in
part to the attitude of the company (let the user find the bugs for us, and let him come to us on
his hands and knees begging us to fix them), but is probably due in greater measure to the limited
ability of the software producer to manage a project of enormous complexity consisting of
millions of lines of code, while also trying to keep up with changes in the hardware environment
and increasing demands by users for added capabilities in the software. However, it must be
borne in mind that the deeper the inroads that Linux makes in Windows’ share of the market, the
greater the incentive this gives to Microsoft to become competitive! No one can predict where
that will lead. Will Microsoft change its long-standing policy and release the source code to
allow critical examination, as well as custom modification, by the programming community?
Will they solicit suggestions for code changes and for bug fixes, perhaps offering to pay
handsomely for sound code contributed by users? Will Microsoft surprise the world by itself
adopting the Linux kernel, thoroughly rebuilding the rest of its operating software to maintain
the look and feel of Windows, while achieving the benefits of the Open-Source movement for
continued evolution of the kernel? Alternatively, will some other commercial firm perhaps come
up with a new operating system that will be technically competitive with Linux, while also
having the advantages of roots in the commercial environment and complete compatibility with
Windows applications that would make it competitive with Windows? I certainly do not mean to
suggest that a commercial challenger is likely to arise to Windows’ dominance of the
marketplace, but surprises and revolutions in the technological arena certainly do occur, and such
a possibility cannot be glibly ruled out. The high-tech marketplace is littered with the corpses of
formerly giant firms that had dominated major segments of the industry, and that subsequently
either abandoned the computer marketplace and limited themselves to other areas of business, or
went out of existence entirely, or have been swallowed up by later or once-smaller upstarts.
Names like General Electric, Honeywell, Control Data Corporation, and Digital Equipment
Corporation come readily to mind. No one can foretell the future of Microsoft.

2. History of Linux

Linux is not an isolated phenomenon. It arose as the culmination of what can be
considered in Computer Science terms to be a rather lengthy history of development.
Understanding what were the antecedents of Linux and how it came into being provides
substantial insight into what Linux is all about.

a. MULTICS

11

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

The Linux story begins with the development in 1965 of an operating system called
MULTICS (MULTiplexed Information and Computing Service). MULTICS was a joint effort
undertaken originally by MIT and General Electric (GE). Shortly after the work was begun,
General Electric decided to get out of the computer business, and sold off its computer operation
to Honeywell, which thus became the successor to GE. Subsequently to initiation of the project,
AT&T’s Bell Laboratories joined the development team, thus increasing the team’s membership
from two to three. However, in 1969 Bell Labs withdrew from the MULTICS project.

b. UNIX

Two members of the Bell Labs team that had been working on the MULTICS project
were Dennis Ritchie and Ken Thompson. There was a particular computer game that they had
enjoyed playing that had run on the MULTICS system, and they were frustrated that due to their
employer’s withdrawal from that project they were no longer able to play their favorite game.
There was an unused Digital Equipment Corporation PDP-7 computer available in their
laboratory, so Thompson developed a simple operating system to enable them to port the game to
the PDP-7. He originally wrote the operating system in PDP-7 assembler in 1969, and gave it
the name UNICS as a play on the name of the MULTICS system they had previously been
working on. Subsequently, the spelling was changed to UNIX.

As it was originally developed, UNIX was not portable. It was closely linked to the PDP-

7 hardware for which, and in whose assembly language, it was originally developed. A need for
portability was soon recognized, however, and in order to facilitate the achievement of
portability, Thompson developed a new programming language. The new language was derived
from a pre-existing language called BCPL, and it was given the simple name “B”. The new
language provided, unlike most previous languages available at that time, such as COBOL and
FORTRAN, an unusual level of access to the hardware of the machine. Subsequently, Ritchie
developed another language derived from “B”, which he called “C”. Then Ritchie and
Thompson together rewrote UNIX in “C” in 1973. They did this to make it possible easily to
port most of the operating system to other hardware, as most of the software could be compiled
and executed on any computer for which a “C” compiler was available. Only a relatively small
part of the code of the kernel, that had to be written in assembly language, would have to be
rewritten in order to allow execution on the new hardware.

AT&T recognized that UNIX had some fine qualities, although initially they appeared to

be oblivious to its commercial potential. Therefore, it was initially distributed free of charge.
Consequently, there developed early on a UNIX culture in which contributions of code for use in
UNIX were made from all over the world. AT&T belatedly realized that UNIX had commercial
potential. They therefore claimed it as their intellectual property, and thereafter they undertook a
very far-sighted strategy to continue popularizing the operating system. They licensed it to
academic institutions at very low rates. As a result, several generations of Computer Science
students were exposed to UNIX at a very early stage in their careers.

12

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

According to the Bible, at one point in its development the human race enjoyed a

common language: “Now the whole world had one language and a common speech.” —
Genesis 11:1. The UNIX world at one time enjoyed the same homogeneity. Just as in general
human civilization, so, too, for UNIX this state of affairs did not last very long. The University
of California at Berkeley started its own separate dialect of UNIX, which featured the C shell, a
Command-Line Interface that was decidedly different from the Bourne shell, which had become
popular early on in the UNIX world. There were other differences that also distinguished the
Berkeley Standard Distribution of UNIX (BSD). AT&T tried to control and standardize UNIX
around their evolutionary dialect, which eventually became “System V Release 4 (SVR4)”.
Furthermore, individual hardware vendors started getting into the UNIX business, and one of the
first things a hardware vendor tries to do is to differentiate its product from that of its
competitors to facilitate its goal of selling more of its hardware. Thus, not only did the two
principal streams of UNIX diverge from each other, but also each one developed into multiple
dialects. One of the major advantages of having a single standardized operating system in use on
different hardware platforms is that the user does not have to undertake a major personal training
program every time he migrates to a new hardware platform. If the UNIX dialect in use on each
platform is different, however, then an appreciable portion of the advantage of having a common
operating system is lost.

Another problem afflicting the UNIX world was the set of licensing restrictions.

Commercial UNIX was supplied without source code, as is the usual practice with fully
proprietary operating systems, such as Hewlett-Packard/Compaq/Digital Equipment
Corporation’s VMS, the various members of Microsoft’s Windows family, IBM’s OS/2, Apple’s
MacOS, and various other proprietary operating systems used on PCs, workstations,
minicomputers and mainframes. Not only is the source code not supplied, but also usually the
license provisions explicitly forbid the user from disassembling the software, that is, from
generating an assembly-language source code program by constructing it from the executable
machine code. If the user were to have access to an assembly-language source-code program,
then he/she would be free to study the program, attain an understanding of how it works, and
possibly modify the program, either to fix program errors or to introduce new functionality not
present in the original version. Having access to the original source code is more valuable in this
regard than is a disassembled program, because the original source code usually contains
identifiers (names of variables and of methods or functions or procedures) that are meaningful
and that hint at the function carried out by the item identified. In addition, the original source
code usually includes embedded comments that are put there specifically to help the person
reading the code to understand the design concept as well as the function or purpose of constants,
variables, methods, functions, procedures, or of individual lines or groups of lines of assembly
code. A disassembled program, on the other hand, will usually assign identifiers arbitrarily, and
therefore the identifier names provide no hint whatsoever at the functionality of the identified
items. Also, of course, a disassembled program will include absolutely no explanatory
comments.

13

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

In following a policy of both not revealing the source code and also explicitly forbidding
the user from disassembling the executable code, the operating-system vendor typically keeps
the user dependent upon him both for fixing any errors that may be present and for making any
needed functional improvements. The vendors’ policy is eloquently summarized by Richard M.
Stallman (2001): “If you want any changes, beg us to make them.”

The history presented here of the roots of Linux in the UNIX world has necessarily been
very brief. Much more extensive coverage of the history of UNIX can be found in the separate
chapter in this volume covering UNIX.

c. Richard Stallman, the Free Software Foundation, and the GNU Project

Stallman had watched the UNIX environment deteriorate from one of cooperative
development, with a lot of sharing of code and ideas and a spirit of community, to an insular
environment in which individual vendors competed with each other and foreclosed any
possibility of user involvement in the development of the operating system or of mutual
cooperation to fix and improve. In reaction to this development, Stallman founded the Free
Software Foundation (FSF) in 1984, and also initiated the FSF’s major activity, the GNU
Project. He actually quit his job in the MIT Artificial Intelligence Laboratory, both so that he
could devote himself fully to the project, and also in order that his employer would not be able to
claim the developed system as its intellectual property.

The principal project undertaken by the Free Software Foundation was the development

of a UNIX-like operating system that would be totally free of proprietary code and thus would be
open, giving programmers the ability to study and modify the code at will and, in particular, to
share in the benefit made by improvements contributed by others. The overall name for the
project was “GNU”, a name that stands recursively for, “GNU is Not Unix”. Development
started on proprietary UNIX systems, but as various code modules were developed, these were
swapped in one by one in exchange for their proprietary cousins, and eventually the entire
system was implemented in non–proprietary Open-Source (“free”) code.

The major goal of the GNU project was to produce a UNIX-like operating system totally

as an Open-Source product. Nevertheless, several decisions were made that exerted strong
influence on the technical aspects of the project. Three of these are especially worthy of note.
First, although 32-bit microprocessors were relatively new in 1984 when the project was
initiated, nevertheless it was decided that 16-bit processors would not be supported. Second, the
traditional UNIX emphasis on minimization of memory usage was dropped, at least for
utilization of up to one megabyte. Finally, wherever possible dynamically allocated data
structures were used, in order to avoid the problem of arbitrarily determined size limits. These
decisions have had far-reaching effect on the efficiency and performance of GNU/Linux.

14

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

The various parts of GNU were developed over a period of several years, leaving the
kernel for last. The concept adopted for the GNU kernel was that it would be based upon the
Mach microkernel. Mach was originally developed at Carnegie-Mellon University, and was
subsequently continued at the University of Utah. The major advance of Mach over previous
UNIX and UNIX-like kernels was its capability to support loosely-coupled multiple processors.
The GNU kernel was therefore based upon a collection of servers, in the terminology of the
project a “herd of GNUs”. It was therefore given the name “HURD”1. This was a functionally
very useful concept, but it did have a distinct downside. Development of the GNU kernel was
very much drawn out in time because of the difficulty involved in debugging the asynchronous
multi-threaded servers inherent in the concept that must pass messages to each other (Stallings,
2000). This extended development time for the GNU kernel was the sole remaining obstacle to
fielding the entire GNU operating system. Thus, the time was ripe for Linus Torvalds to step in
with his Linux kernel. This had a less ambitious design concept than the HURD kernel being
worked on by the GNU stalwarts, but although differently conceived, nevertheless it was very
well matched to all of the extra-kernel elements of the GNU project. It came along at just the
right time to be plugged into the main body of GNU software and thus to complete the free and
open-source UNIX-like operating system that was the goal of GNU.

d. Andrew Tanenbaum and Minix

Due to the evolution of UNIX into a number of disparate proprietary dialects, as well as
its ever-increasing complexity and the absence of source code, UNIX had evolved into a system
that was no longer well suited to teaching about operating systems. Two well-known faculty
members responded to this situation by designing UNIX-like operating-system kernels that were
intended to meet pedagogic needs. Robert Comer developed XINU (note that XINU is UNIX
spelled backwards), and Andrew Tanenbaum produced MINIX. These were both available at
low cost, and with complete disclosure of source code, thus lending themselves well to use by
students. The student could study and understand all of the code, and could also produce his
own modifications. From a pedagogical perspective, this results in a very good grasp by the
student of how an operating system works.

e. Linus Torvalds and the Initial Development of Linux

A graduate student in Computer Science named Linus Torvalds (pronunciation: Lee’-
nuhs) studied operating systems in 1991 at the University of Helsinki in Finland, using Andrew
Tanenbaum’s textbook and the UNIX-like kernel called MINIX that Tanenbaum had developed.
Torvalds was not satisfied, however, both with the MINIX kernel, because of its limited
capability, and also with the MINIX file system. He therefore decided to try to develop a more

1 One of the delightful features of the Linux culture is the sense of humor that pervades it.

15

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

capable as well as a pedagogically useful UNIX-like kernel on his own. Torvalds recognized,
however, that this was a major undertaking, particularly in light of the modest amount of
experience that he had had with operating systems at that time (he was then a relatively junior
graduate student). Therefore, when he started work on the new kernel in April 1991, he posted a
notice in a widely read news group, to inform others of his new project and to solicit their
collaboration. The solicitation was successful, the code was posted, corrections were made and
also posted, and the first kernel was released publicly in October 1991. Originally, this was just
a fun pastime for computer geeks. However, the code evolved into a mature form, and
eventually a stable version of the kernel was produced. The first release of the stable kernel took
place in March 1994.

f. Why Is Linux So Much More Popular than its Progenitors?

Linux greatly exceeds in popularity its immediate ancestor, Minix, as well as most
flavors of UNIX, from which it is derived. It is much more robust and capable than Minix,
probably due in large measure to its multi-authored origin together with the “Copyleft”
provisions that were so critical in encouraging voluntary contributions to the development of the
code. And its magnificent stability, together with the uniformity of look and feel across
platforms, are probably the major reasons, in addition to the openness of the source code, for the
headway made by Linux against the various proprietary flavors of UNIX.

g. Origin, Appropriateness, and Proper Pronunciation of the name Linux

Torvalds originally used the name Linux only privately, and attempted publicly to name

his new kernel Freax. An associate, Ari Lemmke, who ran the FTP site used originally to
distribute the code, didn’t like that name, and therefore decided to use Linux instead. Thus,
Linux was born.

Strictly speaking, the name Linux should be applied only to the kernel, which is the

particular contribution made by Linus Torvalds and collaborators. The great majority of the
code included in the various distributions of Linux belongs not to the kernel but to other, non-
continuously-memory-resident parts of the operating system, such as those comprising the GNU
project, which was nearly complete except for the kernel before Linus Torvalds came on the
scene. Richard Stallman (2000) has contended that the most appropriate name for the total
software package should really be GNU/Linux, reflecting the fact that the contribution of GNU
code to the entire enterprise is greater than that of Linux, and that the name Linux belongs
principally just to the kernel. Despite the attractiveness of Stallman’s point, however, most of
the world community has come to accept the name Linux for the entire package. This may be
not completely fair to the many programmers who made immense contributions of time and
effort to the total body of the software both in pre-Linus Torvalds days and subsequently, and in

16

Version: 15 May 2002, revised 01 Oct 2002

Introduction to Linux, by Charles Abzug

particular to Richard Stallman himself, who almost single-handedly developed and promoted the
concept of free software, together with the “Copyleft” that has been crucial to its success, and
who also initiated the GNU project, nurtured it, and led it to success by dint of substantial
personal sacrifice as well as incisive leadership. Nevertheless, the world has accepted the name
Linux for the entire package, including the part contributed by GNU, and therefore the name
Linux is retained here.

What is the proper pronunciation of Linux? There are two principal streams of thought.

Some computer folk use a pronunciation based upon the Anglicized pronunciation of Torvalds’
first name. Native speakers of English commonly butcher the pronunciation of other peoples’
languages, including the pronunciation of foreign names. Thus, the typical pronunciation of the
name Linus by most speakers of English is Lye’-nuhs. This pronunciation is normally used, for
example, both for the name of the character in Charles Schultz’s “Charlie Brown” cartoon series,
as well as for the name of the two-time winner of the Nobel Prize (chemistry, and the Nobel
Peace Prize), Prof. Linus Pauling of Cal Tech. The sound of Linus as pronounced by most
speakers of English is similar to the English pronunciation of the Persian name Cyrus (Sigh’-
ruhs). The equivalent pronunciation of the name of the operating system, Linux, would thus be
Lye’-nuks. However, in Swedish2 the correct pronunciation of Linus is Lee’-noos, and Linus
Torvalds himself uses the pronunciation Lee’-nooks for the name of the operating system. This
author is strongly of the opinion that English-speaking people should pay foreigners the courtesy
of at least attempting to pronounce their names authentically, and is therefore a strong advocate
of the pronunciation Lee’-nooks. The modern miracle of the Internet allows us all to hear the
actual voice of Linus Torvalds pronouncing the name Linux. The URL to hear him do that is:
ftp://ftp.kernel.org/pub/linux/kernel/SillySounds/english.au

h. GNU and “Copyleft”, and their impact on the evolution of Linux

In setting up the Free Software Foundation, Richard Stallman very creatively adapted the
provisions of copyright law to his purpose of assuring both: (a) that the source code would
perpetually remain open and (b) that a vendor would be strictly prevented from making
derivative works from the free software and making these derivative works proprietary, and then
legally exerting control over the users and enticing them away from the free product towards the
vendor’s proprietary derivatives. To accomplish these goals, Stallman copyrighted the software,
and required, as a condition for obtaining a license to use it, that all derivative works made from
Free-Software-Foundation-produced software and subsequently copied and distributed, be
covered by the identical copyright. There could be no license fee required for the use of the

2 According to Eric S. Raymond’s “Rampantly Unofficial Linus Torvalds FAQ”

(http://www.tuxedo.org/~esr/faqs/linus/), although Linus Torvalds comes from Finland, nevertheless his native
language is not Finnish but Swedish, there being a considerable minority of native Swedish speakers in Finland.
Finland has two official languages, Finnish and Swedish, and residents of localities that have substantial native-
Swedish population are entitled by law to carry out their communications with government entities in Swedish
(http://virtual.finland.fi/finfo/english/finnswedes.html).

17

Version: 15 May 2002, revised 01 Oct 2002

ftp://ftp.kernel.org/pub/linux/kernel/SillySounds/english.au
http://www.tuxedo.org/~esr/faqs/linus/
http://virtual.finland.fi/finfo/english/finnswedes.html

Introduction to Linux, by Charles Abzug

software, although a modest charge could be made to defray the cost of distribution media. Also,
it was required that the source code either be distributed in its entirety together with the
executable code or else be made readily available for no more than a modest charge for
reproduction. Deliberate obfuscation of the source code is prohibited, as is restriction on further
modification and derivation of new software (www.opensource.org).

A friend of Stallman’s, Don Hopkins, sent him a letter around 1984/5, on the envelope of

which he had scribbled, “Copyleft—all rights reversed.” This summed up very nicely Stallman’s
use of copyright law to accomplish the opposite of what copyright normally does. Instead of
restricting the user’s right to the software, it guaranteed completely unobstructed right.
Therefore, Stallman adopted Hopkins’ term, “copyleft”, and used it to refer to the GNU Public
License Agreement, or GPL. This remains the standard license under which all GNU software
and the Linux kernel are distributed today.

i. Worldwide Cooperation and Support: a Grassroots Movement

Linux is not just an operating system; it is a culture. The concepts promulgated by
Richard Stallman under the aegis of his brainchild, the Free Software Foundation, have become
the bywords of the Linux movement. There is a small army of enthusiasts who enjoy the
camaraderie and the easygoing humor of the Linux community. Anyone may participate who
has the technical smarts, as well as the time and will. The Linux community is a true
meritocracy. No one needs to know, nor does anyone care, what is your race, religion,
nationality, or sexual orientation, what you look like, or how you dress. Whether you have a
pleasant or an obnoxious personality makes very little difference. Unlike the situation in the
commercial world, there are no supervisors or executives to suck up to; all that counts is the
quality of your contribution. And the key to its astonishing success has been the Internet. As
Linus Torvalds himself has said, “One of the most important and unique facets of the Linux
development project has been the effect that feedback (mostly via the Internet) has on
development: feedback accelerates development dramatically” (foreword to Sobell, 1997).
Also, “Linux wouldn’t be what it is today without the Internet and the contributions of an
incredible number of people” (op. cit.).

3. Hardware Architectures Supported

In the commercial environment, in most instances an operating system is designed for a
single hardware architecture. In fact, the kernel of the operating system, which is the part that
must reside in memory starting immediately after boot-up and continuing until system shut-
down, is highly specific to the hardware architecture, so much so that the name “UNIX”, for
example, although widely thought of as a single operating system, is, in reality, a family of

18

Version: 15 May 2002, revised 01 Oct 2002

http://www.opensource.org/

Introduction to Linux, by Charles Abzug

operating systems, since the kernel that implements UNIX on each and every different hardware
platform is different from every other UNIX kernel. This despite the fact that the different
versions of UNIX implemented on two particular hardware architectures may have a totally
common look and feel.

In the UNIX world, in fact, in addition to the various kernels each specific to a particular

hardware architecture, there are also several varieties of UNIX, of which the major variants are
AT&T’s System V Release 4 (SVR4) and the Berkeley Software Distribution (BSD). The look
and feel of these major variants is similar, but definitely not identical.

In the case of Linux, again we are really dealing not just with one single operating

system, but rather with a family of operating systems. However, Linux comes in only one
flavor, the look and feel being nearly identical across all hardware architectures. The kernel is
standardized for each hardware family. Linux runs on quite a number of hardware architectures,
including the Amiga, the Apple-IBM-Motorola PowerPC, the Atari, the DEC/Compaq/Hewlett-
Packard Alpha, the Intel 32-bit processor family (consisting of the 80386, 80486, Pentium,
PentiumII, PentiumIII, Pentium4, Celeron, and Xeon), the MIPS 10000 series, the Motorola
M68000 series, the IBM System/390 zServer iSeries architecture, and also the 64-bit
architectures produced by Intel (Itanium) and AMD (Sledgehammer).

4. Distributions of Linux and Vendor Support

A distribution of Linux consists of a package containing all of the software necessary
both to install Linux and to run it. There is an Internet site that lists many Linux distributions
(www.linuxhq.com/). A recent search on this site revealed 164 distributions. Some of these are
specifically geared to particular languages. There are, for example, distributions listed for the
Arabic language (www.haydarlinux.com/p), as well as for Hebrew (ivrix.org.il/). There are seven
principal Linux distributions for English-speaking users. One of these, Debian, is produced by a
non-profit corporation called “Software in the Public Interest, Inc.”. The Debian Linux
distribution is produced through the contribution of volunteers. Other commonly-used Linux
distributions are commercial, and are listed in alphabetical order, together with the percentage of
users reported to have installed each distribution, according to the Linux Counter
(counter.li.org): Caldera (percentage not reported), Connectiva (1.2%), Corel (percentage not
reported), Mandrake (20%), Red Hat (30%), Slackware (12.1%), and SuSE (11.7%). The non-
commercial Debian distribution is reported to be installed on 13.2% of users’ machines. Thus,
the five most commonly used distributions account collectively for more than 85% of the
installed base of machines. On 30 May 2002, four corporations that produce Linux distributions
announced that they were combining forces to attain a uniformity of their distributions. The four
firms are Caldera, Connectiva, SuSE, and Turbolinux, and they are naming their uniform version
of Linux UnitedLinux.

19

Version: 15 May 2002, revised 01 Oct 2002

http://www.linuxhq.com/
http://www.haydarlinux.com/p

Introduction to Linux, by Charles Abzug

5. Extending Your Knowledge about Linux

Following are the various sources cited in the body of the text. These are mostly
traditional-style publications (i.e., hardcopy books and articles published in hardcopy journals)
that provide in most instances a solid start in the use and also in the care and feeding of Linux.
In some instances, the content is either also or only accessible via the Internet:

BOVET, DANIEL P.; & CESATI, MARCO (2001). Understanding the Linux Kernel. First Edition.

Sebastopol, CA: O’Reilly & Associates. ISBN 0-596-00002-2; O’Reilly Order
Number: 0022.

KOFLER, MICHAEL (1999). Linux. Second Edition. Reading, MA: Addison-Wesley. ISBN 0-201-

59628-8. [NOTE: This book includes two CDs containing part of the Red Hat Linux
distribution. Red Hat has produced several distributions since the one on the
accompanying CDs, but in any case the earlier distribution is certainly adequate to get
started learning Linux, and it is always possible to update later.]

MCCARTY, BILL (1990). Learning Red Hat LINUX. Sebastopol, CA: O’Reilly & Associates,

Inc. ISBN 1-56592-627-7. [NOTE: This book includes a CD containing part of the
Red Hat Linux distribution. Red Hat has produced several distributions since the one
on the accompanying CD, but in any case the earlier distribution is certainly adequate
to get started learning Linux, and it is always possible to update later.]

MOODY, GLYN (1997). “The Greatest OS that (N)ever Was.” Wired, 5.08: August 1997. URL:

www.wired.com/wired/archive/5.08/linux_pr.html

PETERSEN, RICHARD (2001a). Linux: The Complete Reference. Fourth Edition. Berkeley, CA:

Osborne/McGraw-Hill. ISBN 0-07-212940-9. [Comes with significant parts of
several Linux distributions, including Caldera (“OpenLinux eDesktop and eServer”),
Red Hat, and SuSE on several compact disks.]

PETERSEN, RICHARD (2001b). Red Hat Linux 7.2: The Complete Reference. Second Edition.

Berkeley, CA: Osborne/McGraw-Hill. ISBN 0-07-212178-3. [Comes with a
significant part of the Red Hat Linux distribution on compact disk.]

RED HAT (2002a). The Official Red Hat Linux x86 Installation Guide. (for Red Hat Linux 7.2):

available on-line at: www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/install-
guide/, and also available for downloading in printable Adobe Acrobat (*.pdf) format
at: www.redhat.com/docs/manuals/linux/ [NOTE that Red Hat also has installation
guides for the Hewlett-Packard/Compaq/DEC Alpha, for the Intel Itanium, for IBM’s

20

Version: 15 May 2002, revised 01 Oct 2002

http://www.wired.com/wired/archive/5.08/linux_pr.html
http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/install-guide/
http://www.redhat.com/docs/manuals/linux/RHL-7.2-Manual/install-guide/
http://www.redhat.com/docs/manuals/linux/

Introduction to Linux, by Charles Abzug

eServer zSeries of System/390 mainframes, in addition to the Intel x86 processor
series.]

RED HAT (2002b). Getting Started Guide (for Red Hat Linux 7.2): Available for downloading in

printable Adobe Acrobat (*.pdf) format at: www.redhat.com/docs/manuals/linux/

SARWAR, SYED MANSOOR; KORETSKY, ROBERT; & SARWAR, SYED AQEEL (2002(SIC!)).

LINUX: The Textbook. First edition. Boston, MA: Addison Wesley Longman, Inc.
QA76.76.063 S35545 2001; 005.4’32—dc21; 00-069963; ISBN 0-201-72595-
9(pbk.). [NOTE: This book includes a CD containing part of the Mandrake Linux
distribution.]

SOBELL, MARK G. (1997). A Practical Guide to LINUX. Reading, MA: Addison-Wesley

Publishing Company. QA76.76.063S5948 1997; 005.4’469—dc21; 97-8248; ISBN
0-201-89549-8. [NOTE: This is a superbly written book. It delves very thoroughly
and very systematically into the technical aspects of working with Linux. Linus
Torvalds learned about UNIX and was inspired to work with it through a predecessor
to this book. Probably the best all-around work on Linux available today.]

SOBELL, MARK G. (2003). A Practical Guide to Red Hat LINUX. Reading, MA: Addison-

Wesley Publishing Company. ISBN 0-201-70313-0.

STALLINGS, WILLIAM (2001). Operating Systems: Internals and Design Principles. Fourth

Edition. Upper Saddle River, NJ: Prentice-Hall. QA76.9C643673 2000; 004.2'2—
dc21; 00-7405; ISBN 0-13-031999-6.

STALLMAN, RICHARD (1998). “Linux and the GNU Project.” URL:

www.gnu.org/gnu/linuxandgnu.html

STALLMAN, RICHARD (2000). “What’s in a Name?” URL: www.gnu.org/gnu/why-gnu-

linux.html

STALLMAN, RICHARD (2001). “The GNU Project.” Originally published in: DIBONA, CHRIS;

STONE, MARK; OCKMAN, SAM, editors (1999). Open Sources: Voices from the
Open Source Revolution. Sebastopol, CA: O’Reilly & Associates. ISBN
1565925823 (but subsequently revised). URL: www.gnu.org/gnu/thegnuproject.html

Following are several modern-type Internet sources that provide a wealth of information
regarding Linux. In many cases, these sources, in true Internet tradition, are frequently updated
to reflect changes occurring in the Linux world:

21

Version: 15 May 2002, revised 01 Oct 2002

http://www.redhat.com/docs/manuals/linux/
http://www.gnu.org/gnu/linuxandgnu.html
http://www.gnu.org/gnu/why-gnu-linux.html
http://www.gnu.org/gnu/why-gnu-linux.html
http://www.gnu.org/gnu/thegnuproject.html

Introduction to Linux, by Charles Abzug

22

Version: 15 May 2002, revised 01 Oct 2002

History and Development of Linux: www.wired.com/wired/archive/5.08/linux.html
 counter.li.org/ (an organization that compiles
 statistics on Linux usage)

Open Source Initiative: Open Source Definition. www.opensource.org
 www.gnu.org

Linux Headquarters: www.LINUXhq.com

Linux Documentation Project: tldp.org/

Linux Distributions: www.fokus.gmd.de/LINUX/LINUX-distrib.html (describes several
 distributions)
 www.caldera.com (Caldera distribution)
 en.conectiva.com/ (Connectiva distribution)
 linux.corel.com/ (Corel distribution)
 www.debian.org (Debian distribution)
 www.mandrakelinux.com/en/ (Mandrake distribution)
 www.redhat.com/ (Red Hat distribution)
 www.slackware.com/ (Slackware distribution)
 www.suse.com (SuSE distribution)

Linux Kernel Archives: www.kernel.org

Linux Journal: www2.linuxjournal.com/

NOTE that there are also various Linux Users’ Groups (LUGs) that are excellent forums for
dissemination of information.

6. ACKNOWLEDGMENTS

I thank my son, Mordechai Tsvi Abzug, for several conversations about Linux in which I
bounced some ideas off him and obtained valuable feedback which contributed to the content of
this article. I also thank Dr. Mal Lane, head of the Computer Science Department at James
Madison University, for giving me the opportunity to teach Operating Systems.

http://www.wired.com/wired/archive/5.08/linux.html
http://counter.li.org/
http://www.opensource.org/
http://www.gnu.org/
http://www.linuxhq.com/
http://tldp.org/
http://www.fokus.gmd.de/LINUX/LINUX-distrib.html
http://www.caldera.com/
http://en.conectiva.com/
http://linux.corel.com/
http://www.debian.org/
http://www.mandrakelinux.com/en/
http://www.redhat.com/
http://www.slackware.com/
http://www.suse.com/
http://www.kernel.org/
http://www2.linuxjournal.com/

	1. OVERVIEW
	b What Linux Is All About
	c. Why Linux Is Important, and Why It Can Be Useful to You
	d. The Future of Linux

	2. HISTORY OF LINUX
	a. MULTICS
	b. UNIX
	c. Richard Stallman, the Free Software Foundation, and the GNU Project
	d. Andrew Tanenbaum and Minix
	e. Linus Torvalds and the Initial Development of Linux
	g. Origin, Appropriateness, and Proper Pronunciation of the name Linux
	h. GNU and “Copyleft”, and their impact on the e
	i. Worldwide Cooperation and Support: a Grassroots Movement

	3. HARDWARE ARCHITECTURES SUPPORTED
	4. DISTRIBUTIONS OF LINUX AND VENDOR SUPPORT
	5. EXTENDING YOUR KNOWLEDGE ABOUT LINUX
	1. Overview
	a. What is an Operating System?
	b. What Linux Is All About
	c. Why Linux Is Important, and Why It Can Be Useful to You
	d. The Future of Linux

	2. History of Linux
	a. MULTICS
	b. UNIX
	c. Richard Stallman, the Free Software Foundation, and the GNU Project
	d. Andrew Tanenbaum and Minix
	e. Linus Torvalds and the Initial Development of Linux
	f. Why Is Linux So Much More Popular than its Progenitors?
	g. Origin, Appropriateness, and Proper Pronunciation of the name Linux
	h. GNU and “Copyleft”, and their impact on the e
	i. Worldwide Cooperation and Support: a Grassroots Movement

	3. Hardware Architectures Supported
	4. Distributions of Linux and Vendor Support
	5. Extending Your Knowledge about Linux
	6. ACKNOWLEDGMENTS

