CS-450 & CS-550: Operating Systems

Fall 2008: Mid-Term Exam ANSWERS

CORRECTED

© 2008 Charles Abzug

Rules for the Examination:

1. The JMU Honor Code applies. You will not get credit for your grade unless you sign the Honor Code declaration (the Honor Code declaration is a JMU requirement). Please sign below *legibly* to indicate your compliance with the Honor Code:

16 Oct 2008

Signature:

- You must also write your name legibly on the back of the last page of this examination, and nowhere else, so that I know who you are. Please <u>also</u> write the last four digits only of your JMU ID number in the indicated location at the top of each odd-numbered page.
- 3. This examination is closed book, closed notes (but open mind), NO calculators allowed.
- 4. For many of the questions, you are given several choices for the answer, with each choice bearing an identifying letter. In some questions, you may be asked to write in the answer. To get credit for your work, you **must** mark the answer to each question **on the answer sheet that is provided at the end of the examination**, by indicating the <u>lettered choice</u> next to the number for the question, where such choices are provided to you.
- 5. Where lettered choices are not enumerated in the question, fill in the answer in the space provided.
- 6. All work is to be done on the examination pages, and is to be handed in along with the answer sheet. You will not receive credit for any answer that needs to be calculated or worked out, unless the justification for your answer is clearly apparent from your work.

Example: Indicate the name of the capital city for each country:

Question #:	Country:
101	England
102	France
103	Germany
104	Greece
105	Turkey

Choice: Capital City		
Α	Istanbul	
В	London	
С	Berlin	
D	Paris	
Ε	Athens	
F	none of the above	

Answer: On your answer sheet **at the end of the examination**, you would mark the correct answers as follows:

Question #:	Answer:
101	В
102	D
103	С
104	Ε
105	F

Item #i: The following statements all pertain to the Kernel of the Operating System. They are general statements, and you should consider their truth or falsity on the basis of whether or not they apply in general to all or nearly all Operating Systems, not just to one in particular. Mark each statement either T (true) or F (false):

		2 pts each
1.	The kernel implements all of the functionality of the Operating System.	Answer: False
2.	All of the kernel of the Operating System must be continuously memory-resident.	Answer: True
3.	The kernel of the Operating System includes the Interrupt Vector.	Answer: True
4.	External Fragmentation and Internal Fragmentation of main memory can both be present	simultaneously in a single computer
	system.	Answer: False
5.	On a multi-user computer system, the Operating System is responsible for preventing a	user from accessing the contents of
	system memory and of secondary storage allocated to other users.	Answer: True
6.	In multi-threaded processing with Kernel-Level threads, the various threads associated	l with a single process must share a
	common Thread State (e.g., Ready, Blocked, or Running).	Answer: False
7.	Part of the kernel is memory-resident, and part of it is not.	Answer: False
8.	In all operating systems, a new program can be loaded into a child process's Memory A	ddress space at the instant of initial
	creation of the child process, different from the program in the parent's Memory A	Address space, if it is desired that the
	child process execute a different program than the parent.	Answer: False
9.	For Kernel-Level threads, when one thread associated with a particular process become	es blocked, then the entire process is
	blocked.	Answer: False
10.	The kernel is the part of the Operating System that runs continuously.	Answer: False
11.	A mid-term scheduler must be part of every Operating System other than those that execution	ute a single-task-at-a-time.
		Answer: False
12.	In multi-threaded processing, the various threads associated with a single process share a	a common User Stack.
		Answer: False

2 pts each

2 pts each

Item # ii: Indicate which of the following items are organized as separate processes (Yes or No):

13.	Several print jobs in the print SPOOLer.	Answer: No
14.	The service routine for an interrupt.	Answer: No
15.	Calls from within a single application program to several different subroutines.	Answer: No
16.	Each different application program running on the system.	Answer: Yes

Item # iii: Indicate which of the following are System Administration tasks (Yes or No):

17.	Addition of a new user.	Answer: Yes
18.	Deletion of a user.	Answer: Yes
19.	Installation of new application software.	Answer: Yes
20.	Upgrading of existing application software.	Answer: Yes
21.	Performance of secure backup.	Answer: Yes

Item # iv: Which of the following are included in a process image (Yes or No):

			2 pts each
22.	Executable program code.	Answer: Yes	
23.	The values of variables.	Answer: Yes	
24.	Copies of the contents of the various registers as of the last time the process ran on the CPU.	Answer: No	
25.	The user stack.	Answer: Yes	
26.	The Process Control Block (PCB).	Answer: No	

Item # v: Consider the following **direct** process state transitions. By **direct** it is meant that a process can transition directly from the first state to the second without passing through any intermediate state. Indicate which of the direct state transitions listed can or cannot occur (**Y**es or **N**o):

2 pts each

2 pts each

27.	Running \rightarrow Ready	Answer:	Yes
28.	Ready \rightarrow Running	Answer:	Yes
29.	Ready \rightarrow Blocked	Answer:	No
30.	Blocked \rightarrow Ready	Answer:	Yes
31.	Running \rightarrow Blocked	Answer:	Yes
32.	Blocked \rightarrow Running	Answer:	No

Item # vi: With regard to scheduling, indicate into which category of scheduling, if any, each of the activities listed below falls:

- A. Long-Term Scheduling
- **B.** Mid-Term Scheduling
- C. Short-Term Scheduling
- **D.** all of the above.
- **E.** more than one, but **not** all, of the above.
- **F.** none of the above.

Item vii: Indicate which statements are True, and which are False, regarding a single process and its threads:

		2 pts each
38.	In an operating system environment that operates with User-Level threads only (no Kernel-Level threads),	the various threads
	associated with a single process all share a common context, including a common PC.	Answer: False
39.	In an operating system environment that operates with Kernel-Level threads only (no User-Level threads),	the various threads
	associated with a single process all share a common context, including a common PC.	Answer: False
40.	The different threads associated with a single process all share a single processor context., i.e., the value	ue of the Processor
	Status Word is the same for all such threads.	Answer: False
41.	Thread creation takes more time than process creation.	Answer: False
42.	Each thread associated with a single process has exclusive ownership of any files that it has opened; they	are not available to
	other threads associated with the same process.	Answer: False
43.	Each thread associated with a single process has a separate text (program code) area.	Answer: False

Item viii: A <u>Preemptive</u> job scheduler is invoked when (Yes or No):

44.	the currently running process finishes execution and terminates.	Answer:	Yes
45.	the currently running process issues a blocking system call.	Answer:	Yes
46.	another process's I/O completes, moving that process to the ready queue.	Answer:	Yes
47.	a Timer Interrupt occurs: time quantum exceeded.	Answer:	Yes

Item ix: Consider the following page reference stream:

0, 3, 1, 4, 1,5, 1, 6, 0, 5, 2, 6, 7, 5, 0, 0, 0, 6, 6, 6, 6, 3, 2, 4, 3, 4

For a page frame allocation of **4**, and assuming that the primary memory is initially unloaded, determine how many page faults will this page reference stream incur under:

12 pts each

48. Belady's Optimal Algorithm.	
49. the First-In-First-Out (FIFO) algorithm.	
50. the Least Recently Used (LRU) algorithm.	

									OPI	IM	AL	AL	GO	RIT	'HM	[
Page Referenced	0	3	1	4	1	5	1	6	0	5	2	6	7	5	0	0	0	6	6	6	6	3	2	4	3	4
Page Fault	F	F	F	F	Ν	F	Ν	F	Ν	Ν	F	Ν	F	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	F	F	F	Ν	Ν
Page Frame 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3	3	3	3
Page Frame 2		3	3	3	3	3	3	3	3	3	2	2	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Page Frame 3			1	1	1	1	1	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	4	4	4
Page Frame 4				4	4	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	2	2	2	2

Answer: 11 page faults (4 + 7)

						H	First	-In	-Fir	st-C)ut ((FIF	O)	AL	GO	RIT	HM									
Page Referenced	0	3	1	4	1	5	1	6	0	5	2	6	7	5	0	0	0	6	6	6	6	3	2	4	3	4
Page Fault	F	F	F	F	Ν	F	Ν	F	F	Ν	F	Ν	F	F	Ν	Ν	Ν	F	Ν	Ν	Ν	F	F	F	Ν	Ν
Page Frame 1	0	0	0	0	0	5	5	5	5	5	5	5	7	7	7	7	7	7	7	7	7	7	2	2	2	2
Page Frame 2		3	3	3	3	3	3	6	6	6	6	6	6	5	5	5	5	5	5	5	5	5	5	4	4	4
Page Frame 3			1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	6	6	6	6	6	6	6	6	6
Page Frame 4				4	4	4	4	4	4	4	2	2	2	2	2	2	2	2	2	2	2	3	3	3	3	3

Answer: 14 page faults (4 + 10)

2 pts each

						L	east	-Re	cen	tly-l	Used	d (L	RU) AI	GC)RI'	ΓHN	N								
Page Referenced	0	3	1	4	1	5	1	6	0	5	2	6	7	5	0	0	0	6	6	6	6	3	2	4	3	4
Page Fault	F	F	F	F	Ν	F	Ν	F	F	Ν	F	Ν	F	Ν	F	Ν	Ν	Ν	Ν	Ν	Ν	F	F	F	Ν	Ν
Page Frame 1	0	0	0	0	0	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	2	2	2	2
Page Frame 2		3	3	3	3	3	3	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
Page Frame 3			1	1	1	1	1	1	1	1	2	2	2	2	0	0	0	0	0	0	0	0	0	4	4	4
Page Frame 4				4	4	4	4	4	0	0	0	0	7	7	7	7	7	7	7	7	7	3	3	3	3	3

Answer: 13 page faults (4+9)

Item x: Several processes enter the ready queue in the order shown. Each I/O takes 20 msec, and I/Os are executed on a separate, dedicated device for each process, so that the I/Os for different processes can run simultaneously. Context switching takes less than 100 µsec, and can therefore be ignored. **Lower** priority numbers correspond to **higher** process priority. Assume that the CPU Burst Time for each process is identical from one burst to the next:

Time of	Process	CPU Burst	Process Priority (useful <u>only</u> with
Arrival	ID	Time (msec)	regard to Priority Scheduling)
0.0 msec	P1	14	3
1.0 msec	P2	7	7
2.0 msec	P3	27	2
3.0 msec	P4	4	3
4.0 msec	P5	10	1

For each processor-scheduling algorithm indicated, determine **which** process does the scheduler assign to the processor for the sixth **scheduling decision**, and also at what time is that scheduling decision made.

8 pts each

Algorithm	Process	Start Time
Shortest Remaining Time Next	51.	52.
Round Robin (time quantum = 12 msec)	53.	54.
Priority Scheduling without preemption (simple priority: NO aging, NO adjustments of any kind in process priority)	55.	56.

Scheduling Algorithm (qualifier): Shortest Remaining Time Next

Time:	0	msec.	Process	P1 r	uns.
READ	Y Que	eue	WAI	Г Quei	ie
Element	PID	RBT	Element	trrq	PID
First:	P1	14	First:		
Second:			Second:		
Third:			Third:		
Fourth:			Fourth:		
Fifth:			Fifth:		

Time:	1	msec.]	Process F	2 run	s.
READ	Y Que	eue		WAI	Γ Queτ	ie
Element	PID	RBT		Element	trrq	PID
First:	P2	7		First:		
Second:	P1	13		Second:		
Third:				Third:		
Fourth:				Fourth:		
Fifth:				Fifth:		

Time:	2	msec.	I	Process P	2 rur	ns.
READ	Y Qu	eue		WAI	Γ Queι	ie
Element	PID	RBT		Element	trrq	PID
First:	P1	13		First:		
Second:	P3	27		Second:		
Third:	P2	6		Third:		
Fourth:				Fourth:		
Fifth:				Fifth:		

Time:	3	msec.]	Process P	4 run	s.
READ	Y Qu	eue		WAI	Γ Queι	ie
Element	PID	RBT		Element	trrq	PID
First:	P1	13		First:		
Second:	P3	27		Second:		
Third:	P4	4		Third:		
Fourth:	P 2	5		Fourth:		
Fifth:				Fifth:		

Time:	4	msec.]	Process I	P4 run	s.
READ	Y Qu	eue		WAI	Γ Queι	ıe
Element	PID	RBT		Element	trrq	PID
First:	P1	13		First:		
Second:	P3	27		Second:		
Third:	P2	5		Third:		
Fourth:	P5	10		Fourth:		
Fifth:	P4	3		Fifth:		

Time:	7	msec.]	Process P	2 run	s.
READ	Y Que	eue		WAI	[Quei	ie
Element	PID	RBT		Element	trrq	PID
First:	P1	13		First:	27	P4
Second:	P3	27		Second:		
Third:	P2	5		Third:		
Fourth:	P5	10		Fourth:		
Fifth:				Fifth:		

Time	:	msec.	Process	runs	•
READ	Y Que	eue	WAI	Γ Queτ	ie
Element	PID	RBT	Element	trrq	PID
First:			First:		
Second:			Second:		
Third:			Third:		
Fourth:			Fourth:		
Fifth:			Fifth:		

Time: Process msec. runs. **READY Queue** WAIT Queue Element PID RBT Element | trrq | PID First: First: Second: Second: Third: Third: Fourth: Fourth: Fifth: Fifth:

Answer: Process P2 is selected to run at 7 msec.

Scheduling Algorithm (qualifier): **Round Robin (quantum = 12 msec)**

Time:	0	msec.	Process	P1 r	uns.
READY Queue			WAIT Queue		
Element	PID	RBT	Element	trrq	PID
First:	P1	14	First:		
Second:			Second:		
Third:			Third:		
Fourth:			Fourth:		
Fifth:			Fifth:		

Time:	12	msec.]	Process P	2 rur	ns.	
READ	READY Queue			WAIT Queue			
Element	PID	RBT		Element	trrq	PID	
First:	P2	7		First:			
Second:	P3	27		Second:			
Third:	P4	4		Third:			
Fourth:	P5	10		Fourth:			
Fifth:	P1	2		Fifth:			

Time:	19	msec.		Process P	'3 rur	ns.	
READY Queue				WAIT Queue			
Element	PID	RBT		Element	trrq	PID	
First:	P3	27		First:	39	P2	
Second:	P4	4		Second:			
Third:	P5	10		Third:			
Fourth:	P1	2		Fourth:			
Fifth:				Fifth:			

Time: 31 msec.				Process P4 runs.			
READY Queue				WAIT Queue			
Element	PID	RBT		Element	trrq	PID	
First:	P4	4		First:	39	P2	
Second:	P5	10		Second:			
Third:	P1	2		Third:			
Fourth:	P3	15		Fourth:			
Fifth:				Fifth:			

Time:	35	msec.	Process P	95 rur	ns.		
READY Queue			WAIT Queue				
Element	PID	RBT	Element	trrq	PID		
First:	P5	10	First:	39	P2		
Second:	P1	2	Second:	55	P4		
Third:	P3	15	Third:				
Fourth:			Fourth:				
Fifth:			Fifth:				

Time:	45	msec.	Process I	P1 rur	ns.	
READY Queue			WAIT Queue			
Element	PID	RBT	Element	trrq	PID	
First:	P1	2	First:	55	P4	
Second:	P2	7	Second:	65	P5	
Third:	P3	15	Third:			
Fourth:			Fourth:			
Fifth:			Fifth:			

Time:		msec.		Process	runs	•
READ	READY Queue			WAI	Γ Queι	ıe
Element	PID	RBT		Element	trrq	PID
First:				First:		
Second:				Second:		
Third:				Third:		
Fourth:				Fourth:		
Fifth:				Fifth:		

Answer: Process P1 is selected to run at 45 msec.

Time: msec.		Process	runs	•	
READY Queue			WAIT Queue		
Element	PID	RBT	Element	trrq	PID
First:			First:		
Second:			Second:		
Third:			Third:		
Fourth:			Fourth:		
Fifth:			Fifth:		

Scheduling Algorithm (qualifier): Priority Scheduling <u>without</u> Preemption

Time:	0	msec.	Process	P1 r	uns.	
READY Queue			WAIT Queue			
Element	PID	RBT	Element	trrq	PID	
First:	P1	14	First:			
Second:			Second:			
Third:			Third:			
Fourth:			Fourth:			
Fifth:			Fifth:			

Time:	14	msec.	Process P	5 run	ıs.
READ	Y Que	eue	WAI	[Quet	ie
Element	PID	RBT	Element	trrq	PID
First:	P2	7	First:	34	P1
Second:	P3	27	Second:		
Third:	P4	4	Third:		
Fourth:	P5	10	Fourth:		
Fifth:			Fifth:		

Time:	24	msec.	Process P	3 rur	ns.	
READY Queue			WAIT Queue			
Element	PID	RBT	Element	trrq	PID	
First:	P2	7	First:	34	P1	
Second:	P3	27	Second:	44	P5	
Third:	P4	4	Third:			
Fourth:			Fourth:			
Fifth:			Fifth:			

Time:	51	msec.	Process P	'5 rur	ns.	
READY Queue			WAIT Queue			
Element	PID	RBT	Element	trrq	PID	
First:	P2	7	First:	71	P3	
Second:	P4	4	Second:			
Third:	P1	14	Third:			
Fourth:	P5	10	Fourth:			
Fifth:			Fifth:			

Time:	61	msec.	Process P	'4 rur	ns.
READY Queue		WAI	Γ Queι	ıe	
Element	PID	RBT	Element	trrq	PID
First:	P2	7	First:	71	P3
Second:	P4	4	Second:	81	P5
Third:	P1	14	Third:		
Fourth:			Fourth:		
Fifth:			Fifth:		

Time:	65	msec.	Process P	1 rur	ns.
READY Queue		WAI	[Quei	ie	
Element	PID	RBT	Element	trrq	PID
First:	P2	7	First:	71	P3
Second:	P1	14	Second:	81	P5
Third:			Third:	85	P4
Fourth:			Fourth:		
Fifth:			Fifth:		

Time	:	msec.	Process	runs	•
READY Queue		WAI	Γ Queι	ıe	
Element	PID	RBT	Element	trrq	PID
First:			First:		
Second:			Second:		
Third:			Third:		
Fourth:			Fourth:		
Fifth:			Fifth:		

Time	:	msec.	Process	runs	•
READY Queue		WAI	Γ Queτ	ie	
Element	PID	RBT	Element	trrq	PID
First:			First:		
Second:			Second:		
Third:			Third:		
Fourth:			Fourth:		
Fifth:			Fifth:		

Answer: Process P1 is selected at 65 msec.

Item xi: Consider the following sequence of *Linux* commands, and the indicated response shown to each. Each typed command is shown in bold, and the responses in plain typeface.

\$ Is

demo names temp

\$ mkdir /home/alex/literature

\$ Is

demo literature names temp

NOTE: From the two directory listings, we can conclude that the current working directory is "/home/alex"

\$ In names /home/alex/literature/newNamesOne

NOTE: This command results in the existence of two directory listings pointing to the inode of a single file. If the file is accessed via either one of the directory listings and is modified, then the changes will be seen by anyone accessing the file either from the same directory listing or the other directory listing.

\$ cp temp /home/alex/literature/tempTwo

NOTE: This command creates a new file named "tempTwo" in the directory "/home/alex/literature". The new file is an exact copy of the file "temp" that had previously been present in "/home/alex". Since there are now two complete copies of the file, each file, "temp" and "tempTwo", can be modified without affecting the content of the other file.

\$ rm names

NOTE: This command deletes the entry "names" from the directory /home/alex. However, the file remains on the disk and can still be accessed through the hard link newNamesOne that had previously been created in the directory /home/alex/literature

\$ cd /home/alex/literature

\$ Is

57. What response is obtained to the last command?

Answer: E

A. defile fidilies temp	A.	demo	names	temp
-------------------------	----	------	-------	------

- B. demo literature names temp
- c. newNamesOne temp tempTwo
- **D.** newNamesOne temp
- E. newNamesOne tempTwo
- **F.** none of the above.

Item xii: If you had made this assignment: **\$ furniture=table** indicate the output of each command.

2 pts each

5 pts

58. \$ echo \$furnitureAnswer: table59. \$ echo '\$furniture'Answer: \$furniture

60. \$ echo "furniture" Answer: furniture

Item xiii: If an *i-node* contains ten direct addresses of 4 bytes each, and all disk blocks are 1024 kB,

61. what is the largest possible file?

Answer: 10,240 kB or 10.24 MB

10 pts

Fall 2008 Mid-Term: CS-450 & CS-550

Ques-	Answer:	
tion:		
1	$\mathbf{F}_{2 pts}$	
2	$T_{2 pts}$	
3	$T_{2 pts}$	
4	$\mathbf{F}_{2 pts}$	
5	$T_{2 pts}$	
6	$F_{2 pts}$	
7	F 2 pts	
8	$oldsymbol{F}$ 2 pts	
9	$F_{2 pts}$	
10	$F_{2 pts}$	
11	F 2 pts	
12	$F_{2 pts}$	
13	$oldsymbol{N}$ 2 pts	
14	$oldsymbol{N}$ 2 pts	
15	$oldsymbol{N}$ 2 pts	
16	$oldsymbol{Y}$ 2 pts	
17	$oldsymbol{Y}$ 2 pts	
18	$oldsymbol{Y}$ 2 pts	
19	$oldsymbol{Y}$ 2 pts	
20	$oldsymbol{Y}$ 2 pts	
21	$oldsymbol{Y}$ 2 pts	
22	$oldsymbol{Y}$ 2 pts	
23	$oldsymbol{Y}$ 2 pts	
24	$oldsymbol{N}$ 2 pts	
25	$oldsymbol{Y}$ 2 pts	

Ques-	Answer:	
tion:		
26	N	2 pts
27	Y	2 pts
28	Y	2 pts
29	N	2 pts
30	Y	2 pts
31	Y	2 pts
32	N	2 pts
33	С	2 pts
34	С	2 pts
35	С	2 pts
36	B	2 pts
37	A	2 pts
38	F	2 pts
39	F	2 pts
40	F	2 pts
41	F	2 pts
42	F	2 pts
43	F	2 pts
44	Y	2 pts
45	Y	2 pts
46	Y	2 pts
47	Y	2 pts
48	11	12 pts
49	14	12 pts
50	13	12 pts

Ques-	Answer:
tion:	
51	P2 8 pts
52	7 msec 8 pts
53	P1 8 pts
54	45 msec ⁸ <i>pts</i>
55	P1 8 pts
56	65 msec _{8 pts}
57	\mathbf{E} 5 pts
58	table 2 pts
59	\$furniture
60	furniture
61	10.24 MB
	10 pts