Procedures in Intrusion Investigation of a UNIX/Linux Host

CS-585F: Computer-Related Law and Computer Forensics

Fall 2002

By

Yu-Li Chen
Rajesh Menon

Joe Meslovich
Table of Contents

Abstract

iii

Acknowledgements

iv

Introduction

1

Signs of a Compromised

 UNIX/LINUX System

1

Ways To Preserve Evidence

4

Investigation of a Linux System

7
Collection Of Evidence

7

Analysis Of Evidence

12

Summary

16

Bibliography

17

Abstract

UNIX and Linux systems are vulnerable to various forms of network attacks. Depending on the diligence of the people administering these systems they can either be extremely easy or extremely difficult to gain unauthorized access to. This document is a case study on how to perform an intrusion detection analysis on a UNIX host in general, and more specifically a Linux system.

Acknowledgements

We would like to express our sincere thanks to Dr. Abzug for his help on this project. We would also like to extend thanks to the Bridgewater College Information Technology Center for the use of their facilities and equipment throughout this process.

Introduction

UNIX does not have good reputation for reliability or security (Gallmann, 1999).
Although UNIX does offer some effective security features such as login and user accounts which are saved in the /etc/passwd file, access control with a granularity of owner, group, and world, and keep log files-usr/adm/lastlog, /var/adm/utmp, /var/adm/wtmp/, /var/adm/acct. UNIX systems directly connected to the Internet are often subject to hacking attempts (Kruse & Heiser, 2002).

The skill and knowledge to investigate a compromised Unix system and the ability to respond to a computer security incident has become essential for both UNIX users and forensic investigators.

The contents of this document will begin with looking for the signs of a compromised UNIX system, and then proceed to preserve and gather evidence. After collecting information and seizing the data we need, the next step is to analyze the file system to look for modifications to data and review log files to examine signs of intrusion.

This document will also include an intrusion investigation of a server owned by the ABC Corporation. The administrators of the system have seen log evidence to suggest repeated attempts to gain access to the server from unauthorized hosts. Included will be the steps that the investigators chose to take in this particular investigation, and an analysis of the outcome of their efforts. A recurring concern of the investigators will be the fact that the server was a production server, and that the administrators would not allow the server to be taken offline during the investigation.

Signs of a compromised UNIX/Linux system

1. Examine log files for connections from unusual locations, or other unusual activity.

Refer to /etc/syslog.conf to see how logging is configured for each system service and where it is sent. Below is a list of some of the more common UNIX and Linux log file names, their function, and what to look for in those files.

· messages
The messages log in the /var/log directory will contain a wide variety of information. The things to look for in this file are anomalies. Also, look for events that occurred around the known time of the intrusion.

· xferlog
If the compromised system has a functioning ftp server, xferlog will contain log files for all of the ftp transfers. This may help you discover what intruder tools have been uploaded to your system, as well as what information has been downloaded from your system.

· utmp
This file in the /var/log directory contains binary information for every user currently logged in. This is only useful to determine who is currently logged in. A way to access this data is either the who command, or the w command.

· wtmp
Every time a user successfully logs in, logs out, or your machine reboots, the wtmp file in the /var/log directory is modified. This is a binary file; the tool used to obtain useful information is last.

· secure
Some versions of UNIX (RedHat Linux for example) log tcp wrapper messages to the secure log file in the /var/log directory. Every time a connection is established with one of the services running out of inetd that uses tcp wrappers, a log message is appended to this log file. When looking through this log file, look for anomalies such as services that were accessed which are not commonly used, or connections from unfamiliar hosts.

2. Look for setuid and setgid files (especially setuid root files) everywhere on your

system.
Intruders often leave setuid copies of /bin/sh or /bin/time around to allow them root access at a later time. The UNIX find program can be used to hunt for setuid and/or setgid files. For example, you can use the following commands to find setuid root files and setgid kmem files on the entire file system:

find / -user root –perm –4000 –print

find / -group kmem –perm –2000 –print

3. Check your system binaries to make sure that they have not been altered.

Intruders may change executable programs on UNIX systems such as login, su, telnet, netstat, ifconfig, ls, find du, df, libc, sync, any binaries referenced in /etc/inetd.conf, and other critical network and system programs and shared object libraries. Compare the versions on your systems with known good copies, such as those from your initial installation media.

Trojan horse programs may produce the same standard checksum and timestamp as the legitimate version. Because of this, the standard UNIX sum command and the timestamps associated with the programs are not sufficient to determine whether the programs have been replaced. The use of cmp, MD5, Tripwire, and other cryptographic checksum tools is sufficient to detect these Trojan horse programs.

4. Look for signs of a network sniffer.

Intruders may install a network-monitoring program, commonly called a sniffer (or

packet sniffer), to capture user account and password information. The first step to take in determining if a sniffer is installed on your system is to see if any processes currently has any of your network interfaces in promiscuous mode, then a sniffer could be installed on your system. Note that detecting promiscuous interfaces will not be possible if you have rebooted your machine or are operating in single user mode since your discovery of this intrusion. Keep in mind that some legitimate network monitors and protocol analyzers will set a network interface in promiscuous mode. Detecting an interface in promiscuous mode does not necessarily mean that an intruder’s sniffer is running on a system.

5. Examine files run by ‘cron and ‘at’.

Intruders may leave back doors in files run from cron or submitted to at. The cron and at commands are used to schedule commands and processes that repeat at specified intervals. These techniques can let an intruder back on the system (even after you believe you had addressed the original compromise). Also, verify that all files/programs referenced (directly or indirectly) by the cron and at jobs.

at –l

crontab -l

6. Check for unauthorized services.

Inspect /etc/inetd.conf or /etc/xinetd.conf for unauthorized additions or changes. In particular, search for entries that execute a shell program(for example, /bin/sh or /bin/csh) and check all programs that are specified in /etc/inetd.conf to verify that they are correct and haven’t been replaced by Trojan horse programs. Also check for legitimate services that you have commented out in your /etc/inetd.conf. Intruders may turn on a service that you previously thought you had turned off, or replace the inetd program with a Trojan horse program.

7. Examine /etc/passwd file.

Check the /etc/passwd file on the system for modifications to that file, and look for the unauthorized creation of new accounts, accounts with no passwords, or UID changes (especially UID 0) to existing accounts. For example, we can use

stat /etc/passwd to look at access and modification information, also use

cat /etc/passwd to show the contents of the file.

 8. Check system and network configuration.

Find any unauthorized entries, especially ‘+’(plus sign) entries and inappropriate non-local host names in /etc/hosts. Furthermore, confirm that these files existed prior to any intrusion and were not created by the intruder.

 9. Look everywhere for unusual or hidden files.

Files that start with a period . and are normally not shown by ls can be used to hide tools and information. A common technique on UNIX systems is to put a hidden directory in a user’s account with an unusual name, something like ‘…’ or ‘..’ or ‘..^G’. The find program can be used to look for hidden files, for example:

find / -name “.. “ –print –xdev

find / -name “.*’ –print –xdev | cat –v

 10. Examine all machines on the local network.

Most of the time, if one host has been compromised, others on the network have been, too.

(CERT Coordination Center, 1999)

Ways to preserve evidence

As soon as you have evidence that indicates a compromise of the system, which cannot be refuted by other evidence you have at hand, you must assume the system has in fact been compromised and begin to gather evidence before it is destroyed, before logs expire, or before anything is altered (Dittrich, 2000).

Before collecting evidence, some preparations are needed:

1. Keep a regular old notebook handy and take careful notes of what you do during your investigation.

2. Start with the script command to ensure that everything you do is captured in a file.

 Make the current time and the hostname the first two items to appear in the script file.

 # script script.txt

 # date

 # uname –a

3. Since system binary programs such as login, su, telnet, ls, and find could have been altered, it is better to use your own clean tools CD to read all the files that you are going to investigate. You must be logged on as root in order to access your tools CD. Mount your tools CD and set your path so that the CD is the only thing in you PATH variable; then confirm your path.

mount -t iso9660 /dev/cdrom /mnt/cdrom

PATH = /mnt/cdrom

echo $PATH

 /mnt/cdrom

We will know discuss ways to preserve evidence according to its volatility and utility.

CPU storage

a. Registers: Infeasible to capture and of minimal utility.

b. Caches: Infeasible to capture as a discrete entity but should be captured as part of system memory image (Kruse & Heiser, 2002).

When UNIX systems are shutdown with the shutdown command, all services are cleanly shutdown and cached file system buffers are flushed, data is written to disc and can be captured as part of system memory image.

Video

The current screen can be captured and provide useful information, and that information is stored in RAM.

To save a copy of the screen:

1. Press Ctrl-Alt-F2 (on a RedHat Linux system) to enter another virtual terminal on the console and login as root (if you know the password).

2. Use xwd command to dump an individual window or use –root option to dump entire screen

 # xwd –display localhost:0 –root > screenshot.xwd

3. Return to the X display by pressing Ctrl-Alt-F7
4. Examine it to make sure that you didn’t capture the screen saver with xwud command

 # xwud –in screenshot.xwd

(Kruse & Heiser, 2002)

System memory

Includes information on all running processes and the state of the kernel. The data is easy to capture, but the act of capturing it changes it (Kruse & Heiser, 2002). UNIX treats everything as a file, which makes it easy to copy and save the contents of the system memory. The physical memory on a UNIX system is /dev/mem; the virtual memory is /dev/kmem. We can use the dd command to copy the memory from the suspect machine:

dd if =/dev/mem of =suspect.mem.image

dd if =/dev/kmem of = suspect.kmem.image

The act of collecting it changes it slightly; therefore, it is impossible to verify accuracy when copying highly volatile objects such as the system’s memory.

Network connections

Network state provides important information on both current network connections and listening processes. We need to know when an attacker has left a network process running or when unauthorized connections are taking place either inbound or outbound (Kruse & Heiser, 2002). The netstat command can capture information on ongoing network activity and use of the –p option will show the processes associated with specific network connections.

netstat –p

 It is possible for an attacker to mess with the routing tables and even hack the address resolution that maps an Ethernet card’s MAC addresses to an IP address (Kruse & Heiser, 2002). We can use netstat to display the routing tables and arp to capture the address resolution tables.

netstat –rn

arp –v

We can capture all of this data in one file along with date command to timestamp the action.

(date; netstat –p; netstat –rn; arp –v) > suspect.netstatus.txt

Running processes

Unix supplies a number of utilities that provide information on the set of all running processes or provide details on a specific running process. Those utilities are:

· ps Displays a list of all running processes with details about their context and state

· last, w, who Get listings of logged in users, prior logins, etc

· uptime Shows current processing load and 2 previous load values. Provides an understanding of current and recent activity.

· top Useful diagnostic tool when system is running slowly. Password cracking tools will show up clearly with top.

· lsof Provides a list of all currently open files and the processes that have opened them.

· fuser Identifies which processes are using a specific file or network socket.

· strace List all system calls being made by a running process.

· truss, ktrace Earlier versions of system call trace.

· ltrace Library routine trace.

(Kruse & Heiser, 2002)

The /proc directory is a pseudo-filesystem that provides a structured interface to /dev/kmem. Every process in memory has a directory in /proc associated with it named after its process ID (PID). At the time of this writing, no attacks that hide /proc entries have been reported, making /proc a more reliable guide to currently running processes than the commonly hacked ps utility.[Kruse 2002] You should collect a quick list of the PID directories in /proc so that you can compare it later with the output of ps. If a process is missing from the ps output that does appear in /proc, that is a clue that ps might have been trojanned.

ls –d /proc/[0-9]* >suspect_proc.txt

Signs of hostile processes:

· Any discrepancy between ps, top, and /proc--PIDs that appears in top or /proc but not ps may have been deliberately hidden.
· Unrecognized commands, especially ones that start with a . or ./ are clear indications that the application was started manually.
· Daemons running more than once that should be running only once, such as inetd—That means the second one was started manually. This is usually a sign of a trojanized version.
· High uptimes (high system utilization) and especially a process using an unusual level of system resources—Some processor intensive program such as cryptanalysis, bogus IRC servers, and crack utilities may be running.
· High network utilization—Could be a sign that one or more systems on your network are being used as zombies in a denial-of-service attack.
(Kruse & Heiser, 2002)

Investigation of a Linux System

The management of the ABC Corporation suspected that their production server was the target of some malicious activity and requested the help of the forensic investigation team to verify the matter. One of the preconditions imposed on the team was that the production server could not be brought down for purpose of investigation. Hence an investigation was expected on a live server. Consequently the file system could not be mounted in the read only mode. Hence MD5 checksums of the original disks were not made before the transfer into the evaluation system as the very process of taking the hash value would make it different from the value obtained on the images at the collection system. Hence the MD5 hash of the suspect’s disk images obtained after the images have been completely copied into the collection system are shown to be identical to the MD5 hash values of theses images after the investigation. But the investigation presumes administrative rights for the investigators. This is important to run the various commands that require that the investigator have root privileges.

The investigation we carried out was comprised of two important steps.

1. The collection of evidence for the file-system analysis.

2. The outcome of the collection process, and the investigation of the suspect file-system

Collection of Evidence

The important steps involved in the collection phase are mentioned here-under.

1. Using the ‘netcat’ command.

The netcat command is used to facilitate copying of data across the LAN. Netcat has to be manually started on the collection host and the suspect host. Initially the listening process is started on the data collection PC. Any arbitary high numbered port is chosen such as 10000.

Command on the collection machine:

nc –l –p 10000 > /temp/nc.suspect.passwd_file

Command on the suspect machine:

cat /etc/passwd /etc/shadow | nc 192.168.0.2 10000 -w3

The nc executable running on the listening host runs until it receives a connection and then the connection is broken. At this point the execution stops and the output file is closed. The -w3 option on the transmitting host means to wait 3 seconds after the data has been sent and then timeout.

2. Log the investigation steps carried out on the suspect system.

Command:

script investigation.txt

The script command ensures that everything done on the suspect system console is documented into a file (investigation.txt) for evidentiary value. This phase is important to carry out the investigation as methodically and carefully as possible. The file would enumerate the systematic flow of commands used on the suspect system to elicit pertinent information. This is also important to convince the management for a need for response capability if a security breach is discovered from the investigation.

3. Maintain a journal to enumerate the results of investigation.

The findings from the commands run or the steps taken in the investigation are clearly documented so as to show the logical development of the investigative process and to function as an aid for refreshing the memory and making the investigative report.

4. Verify the date and time of the suspect system and determine the DNS name and OS version of the system.

Commands:

date, # uname –a

Commands that make the current time and the hostname the first two items to appear in the script file in the suspect system. The system time is further noted in the journal maintained by an investigator. Any discrepancies between the system clock and the real time would have been noted. The second command would also give information about the operating system for instance the version of the kernel for the particular Linux OS.

5. Obtain the screenshot of the suspect system’s desktop.

Command:

xwd –display localhost:0 –root > screenshot.xwd

The screenshot of the suspect system desktop is obtained with the “xwd” command and copy is sent to the collection system using the netcat command. A program such as the Linux graphics editor GIMP will have to be used to convert the file from the xwd format to a more usable format such as jpeg.

6. Save the copies of the suspect’s password and shadow files to the collection-system.

Command:

cat /etc/passwd/etc/shadow | nc 147.138.69.59 10001 –w3

The password and shadow files are saved and the copies are sent to the collection system using the netcat command.

7. Obtain the copies of the suspect’s normal memory and kernel memory files to the collection-system.

Command:

dd bs=1024 < /dev/mem | nc 147.138.69.59 10002 –w3

dd bs=1024 < /dev/kmem | nc 147.138.69.59 10003 –w3
Since the Linux considers everything as a file it makes it easy to copy and save the contents of the system memory.

8. Run the command that sends the date, details of processes with network connections, the kernel routing table and the address resolution protocol to the collection system.

Command:

(date; netstat –p; netstat –rn; arp –v) | nc 147.138.69.59 10004 -w3

The network state provides important information on both the current network connections and the listening processes. The commands help the investigators to know about possible running processes left by a hacker or gives details about any unauthorized connections taking place. The “date” command records the date when the commands were run in the script file . The “netstat –p” command gives the processes associated with the different network connections. The “netstat –rn” command would show the kernel routing table. The ‘arp –v” would give an alternate view of the routing table.This information is copied to the collection system.

9. Looking for unusual running processes.

A series of steps are taken to use some utilities enumerated below, to provide valuable information about all running processes. The task of the investigation team is to capture the state of the suspect machine and get a list of all open files. Then the team tries to correlate this information with the ‘verbose netstat’ captured earlier.

i) Run the command to verify the systems uptime.

Command:

uptime

The command finds how much time the system has been running after its last reboot.

The idea is to check to find evidence of a system compromise as the hacker might require a reboot to start some processes. Else it might also point to a denial-of-service attack as the system might have crashed in panic.

ii) Information about who is connected to system remotely

Command:

who

The command checks the users logged in to the system via the telnet or the ftp services.

iii) Check on the process that takes the maximum resources of the system

Command:

top

The command provides the real time display of the CPU-intensive processes. It is a diagnostic tool when the system is running slowly. Password cracking tools will show clearly with the ‘top’ command. If the team detects any process utilizing the CPU resources in an out-of-the-ordinary fashion that can potentially point to a system security breach then command like ‘strace’ or ‘ltrace’ or ‘fuser’ would be run.

The strace command: It places a System Call Trace. It lists all system calls being made by a running process.

The ltrace command: It places a library routine trace.

The fuser command : It is a file user command that identifies which process is using a specific file or network socket.

10. Obtain information on the running processes and their details along with a list of open files and send it to the collection system.

Command:

(ps –aux; ps –auxeww; lsof) | nc 147.138.69.59 10005 -w3

The first part of the command provides information about the processes that is convenient to be printable on a standard screen. The second part gives detailed information of the processes for later analysis. The last part of the command gives the list of open files.

11. Find the list of running processes on the suspect system.

Command:

ls –d /proc/[0-9]* | nc 147.138.69.59 10006 -w3

The commands give a directory listing of the contents of the proc directory. It is worthy to note that when a kernel is hacked, even an unmodified copy of ps can provide misleading information. The process names in the ps output can be changed without any modification of system binaries.

12. Make a tar file of the /proc directory and send it to the collection system.

Command:

tar –cvpf proc.tar /proc/[0-9]*

The ‘tar’ command is used to create an archive. The parameters used are ‘c’ to create a new archive, ‘v’ to be in the verbose mode to provide a complete list of what the process is doing, ‘p’ to preserve ownership so that if the file is tampered with or looks out-of-ordinary it could be pointed out by way of ownership, and ‘f’ to send the output to a file.

13. Determine the physical devices in the suspect system.

Command:

mount

This is the first step to copy the entire file-system over the network to the collection system. The ‘mount’ command helps the team to determine the active file-systems on the hard drive. It would also point to any network file systems that are being used.

14. Determine the partitions on the primary hard drive of the suspect system.

Command:

fdisk –l /dev/hda
The utility is used as the disk partition utility that helps the team to find the list of partitions on the primary hard drive and also find the file-systems on the hard drive.

15. Make a data dump of the partitions of the suspect system and send it to the collection system.

Command:

dd if=/dev/hda1 bs=1024 | nc 147.138.69.59 10007 -w3

The data dump command helps to collect each image of the partitions of the hard disk and send it to the collection system.

16. Make the MD5 hash on all the files received and the image of the hard-disk partitions.

Command:

md5sum –b suspect.hda1.image

The MD5 hash of the images of the partitions is taken before investigation. After the compete investigation the MD5 is taken again to show that the investigation did not tamper any of the images.

Analysis of Evidence

The utmost concern from the start of the investigation was the fact that the suspect system was a live server, and that its normal operation could not be halted in order to perform the investigation. That fact limited our ability to create exact copies of the file system. Since the system could not be frozen in time, the creditability of the investigation hinged on the ability to collect as much information as possible in a short period of time, and then ensure the integrity of the information once it was collected.

In order to ensure that the collection phase went as smoothly as possible, the investigating team first sat down and developed the investigation checklist that has already been outlined. The investigation team consisted of two people. The first person was responsible for physically interacting with the system console, and the second person was responsible for maintaining the checklist and the physical log of the investigation.

The suspect system was a Dell Optiplex GX1 desktop computer running RedHat Linux version 8.0. The investigation team had the fortune of having access to a Dell Optiplex GX110 desktop computer that was also running RedHat Linux version 8.0 that could be used as the collection system. Both systems were running version 2.4.18-14 of the Linux kernel. In order to be certain of the integrity of the collection system, the computer was formatted and a fresh install of Linux was placed on the system. The install media was created from disk images downloaded from a RedHat mirror site. Prior to burning the disk images to CD-ROM, MD5 sums were taken of the disk images and those sums were verified against the sums stored on the main RedHat download site. Only software packages present on the disk media were installed on the collection system.

Once the checklist was prepared, and the collection system was readied, the collection phase of the investigation began. When the team approached the system it was noted that the system was on, and that the monitor was in power save mode. Moving the mouse brought up the desktop. There were no windows visibly open on the desktop. The investigators opened a single terminal window in order to perform the data collection. The root user was logged into the console. On the suspect system the script command was invoked beginning evidence collection process, and on the collection system a folder was created that would hold the findings of the investigation.

The collection process followed the checklist without error until the step where the investigators attempted to copy the system’s kernel memory (/dev/kmem). When the data dump of the kernel memory was attempted the system returned the following error message.

 # dd bs=1024 < /dev/kmem | nc 147.138.69.69 10003 -w 3

dd: reading `standard input': Bad address

0+0 records in

0+0 records out

The data file on the collection system was empty. The command was attempted several times without success on the suspect system. The investigators also modified the syntax of the command during the subsequent attempts to see if there had been an error in the original syntax. Instead of reading the /dev/kmem file in using the input character “<”, as the Kruse & Heiser text did in some instances, we also tried the input file argument, “if=”, that is part of the dd command. We did not have success with either version. Following the investigation, the original syntax of the command was tested on the collection system and two other Linux systems. The data dump failed in the same manner on the collection system as it did on the suspect system. The first alternate Linux system was running Redhat Linux version 6.2 with version 2.2.14-5.0 of the Linux kernel, and the second alternate Linux system was running an early release of Slackware Linux with version 2.0.0 of the Linux kernel. The data dump worked correctly on those alternate systems. No reason to date has been found to explain why the data dump of the kernel memory failed on the two newer systems.

Following the set back of not being able to collect the kernel memory, the investigation team continued with the checklist. The output of the uptime, who, and top commands did not uncover any activity that appeared to be out of the ordinary, so it was decided by the investigation team to forego an exhaustive documentation of the running processes using the strace, ltrace, and fuser commands. The final step of the data collection phase was to collect the images of the partitions on the system’s hard drives. The mount and fdisk commands were used to determine the number of hard drives present on the system, and how many partitions they were divided into. One hard drive was present on the suspect system, and that one drive was divided into four partitions. Three of the four partitions were used by the regular file-system, and the fourth was used as the swap space for the system. All of the partitions on the hard drive were collected using the data dump command. The data dump command appeared to operate normally, but at the end of each operation the following error message appeared.

dd: reading `/dev/hda1': Input/output error

It is our opinion that this error resulted from the fact that the partitions were mounted in read-write mode throughout the investigation process.

Following the creation of the disk images, the investigation team attempted to mount the suspect file systems on the collection system. Attempts to mount the images on the collection system in a read-only mode resulted in an error message stating that the superblock for the image appeared to be damaged. The investigators then mounted the image for /dev/hda1 in normal read-write mode, and the image then mounted normally. This process corrected the error in the superblock, but it also changed the contents of the image file thus invalidating any MD5 sum taken prior to the mount process. In order to ensure the integrity of the other disk images MD5 sums were created, and the file systems were not mounted during the analysis phase of the investigation. The three unmounted images represented the home directories for the suspect system, the swap space, and the /usr directory. After mounting the suspect’s root file-system in read-write mode, the image was immediately unmounted, and remounted in read-only mode. Deeper investigation of the image uncovered other files that were damaged during the data dump. Any files that were written to the hard drive during the data dump such as log files were empty. The file names were present, but the contents of the files were missing. This proved to be a major set back to our effort. We were forced to immediately return to the suspect system and make a tar ball of the main log directory, /var/log, and then copy that tar ball to the collection system. We were also forced to perform our analysis of the files present in the /home, and /usr directories on the live suspect system, instead of analyzing the images we created.

Following the collection phase the investigation shifted focus to the collection system and we began to process the data that we had collected. The first item of data analyzed was the concatenated file that we had created that contained both the /etc/passwd and /etc/shadow files. There were not any suspicious or unauthorized entries in either file. The next item of data analyzed was the file containing the output from the two netstat commands and the arp command. The only active network connection reported by the set of commands was the netcat process that was copying the data to the collection system. At this point we also looked at the output from the two ps commands, and the lsof command. As with the network statistics, we did not find any processes that appeared to be out of place. In order to be certain that the suspect’s ps command was not tampered with by an intruder we also investigated the /proc directory directly. The investigation did not find any processes that were not reported by the ps command. By this point in time, it was becoming apparent that if the system had been attacked, the attack had by this time ceased. Now that it seemed that we were dealing with a historical event we turned our attention to the log files that we collected from the suspect system.

The first set of logs to be analyzed were the web server logs, since this server’s primary function was serving web pages. Since the access and error logs for the server were relatively short we processed the log manually. The page accesses were normal, and did not include any evidence of script-kiddie attacks.

The second log analyzed was the messages log in the /var/log directory, and this log proved to be most helpful. During a time spanning from approximately 12:17 PM EST to 2:31 PM EST on Friday December 6, 2002 we see that two separate unauthorized hosts attempted to gain access to the suspect system. The first host, venger.bridgewater.edu , focused his attack solely on the ftp service running on the system. The host made twelve attempts to log into the system as either the root user, or as an unprivileged user named joe. This attack appears to have been performed manually by a user on the unauthorized host because of the relatively low number of attempts and the amount of time over which the attacks occurred. Below is an excerpt of the failed attempts.

Dec 6 12:53:10 dorm69-52 ftp(pam_unix)[1613]: authentication failure; logname=uid=0 euid=0 tty=/dev/ftpd1613 ruser= rhost=Venger.bridgewater.edu user=joe

Dec 6 12:53:12 dorm69-52 ftpd: Venger.bridgewater.edu: connected: IDLE[1613]: failed login from Venger.bridgewater.edu [147.138.20.15]

Dec 6 14:14:22 dorm69-52 ftp(pam_unix)[1934]: authentication failure; logname=uid=0 euid=0 tty=/dev/ftpd1934 ruser= rhost=Venger.bridgewater.edu user=joe

Dec 6 14:14:25 dorm69-52 ftpd: Venger.bridgewater.edu: connected: IDLE[1934]: failed login from Venger.bridgewater.edu [147.138.20.15]

The second host, saturn.bridgewater.edu, did not attempt to access the system until 1:17 PM EST. The second host initially attempted to open an anonymous ftp session with the suspect system. This attempt failed because the system was not running an anonymous ftp service. The second host did not attempt to access the system again until 2:27 PM EST. At that time the attacker attempted to remotely login to the system either as the root user, the lp user, or as a blank username using the telnet service. Below is an excerpt of the attacker’s attempts.

Dec 6 14:27:01 dorm69-52 login(pam_unix)[2253]: authentication failure; logname= uid=0 euid=0 tty=pts/0 ruser= rhost=Saturn user=lp

Dec 6 14:27:03 dorm69-52 login[2253]: FAILED LOGIN 1 FROM Saturn FOR lp, Authentication failure

Dec 6 14:27:08 dorm69-52 login(pam_unix)[2253]: bad username []

Dec 6 14:27:10 dorm69-52 login[2253]: FAILED LOGIN 2 FROM Saturn FOR , Authentication failure

Dec 6 14:27:16 dorm69-52 login(pam_unix)[2253]: authentication failure; logname= uid=0 euid=0 tty=pts/0 ruser= rhost=Saturn user=root

Dec 6 14:27:19 dorm69-52 login[2253]: FAILED LOGIN 3 FROM Saturn FOR root, Authentication failure

Four minutes after this attempt, the second attacker appears to have performed a port scan of the suspect system. The attacker did not try to hide the attempt, because the scan appears to have been a full TCP connect() scan, and the most likely tool used would have been nmap. The finger, telnet, and ftp services all logged connection attempts in the message file. Below is an excerpt from that probable port scan.

Dec 6 14:31:07 dorm69-52 fingerd[2273]: Client hung up - probable port-scan

Dec 6 14:31:11 dorm69-52 xinetd[2274]: Can't get the number of pending signals: Bad file descriptor (errno = 9)

Dec 6 14:31:11 dorm69-52 last message repeated 51 times

Dec 6 14:31:24 dorm69-52 ftpd[2276]: wu-ftpd - TLS settings: control allow, cli

ent_cert allow, data allow

Dec 6 14:31:24 dorm69-52 ftpd[2276]: lost connection to Saturn.bridgewater.edu

[147.138.10.40]

Dec 6 14:31:24 dorm69-52 ftpd[2276]: FTP session closed

Dec 6 14:31:25 dorm69-52 telnetd[2277]: ttloop: read: Connection reset by peer

Following this port scan connection attempts from both of the unauthorized systems stopped.

We now had evidence that at least one individual attempted to gain unauthorized access to the suspect system. Our efforts now focused on determining whether or not the any traces of successful entry existed on the suspect system. We checked the xferlog for ftp file transfers during the time in question, and found nothing. The next step was to determine if there were any unauthorized trust relationships in the /etc/hosts file. There were no trust relationships on the suspect system at all. We next searched through the /dev directory to ensure that no regular files were being hidden there, and none were found. We also searched for executable files and suspicious hidden files in the user’s home directories, and again nothing turned up out of the ordinary. Next we checked for unusual SUID and SGID files, and nothing appeared out of the ordinary. The final search of the file system was for core files. If the attackers had been able to panic any of the network services during their attempts, core dumps of the processes should have existed on the system. The search did not turn up any core files.

By this point we were confident that the attackers had not found a way into the system, but we were not going to take anything for granted. The final step in the investigation was to run the rpm -Va command. This command is used to verify the consistency of the binary packages installed on the suspect system using the Redhat Package Manager. When questioned the administrator had stated that all of the binary packages present on the system had been installed using the package manager. Therefore, we could determine if any of the services running on the system could have been trojanned. The output of the command showed that the key programs on the system had not been replaced. The only files that were reported by the command to have changed since the install of the packages were log files, and system configuration files that were updated by the normal operation of the system.

The investigation of the suspect system was now complete. Evidence was found to show that attackers had tried to gain unauthorized access to the system, but those attackers did not gain access to the suspect system. The administrators of the system were informed of the completion of the investigation, and the findings of the investigation.

Summary

As this document has hopefully shown, the most important part of investigating a UNIX or Linux system is having a defined procedure to follow. These systems contain a wealth of information if you know where important information is stored, and how to retrieve that information. The tools needed to perform a basic intrusion detection analysis are already on the system. We did not use any tools or utilities that were not included on the Redhat installation disks. It should also be noted that the Kruse & Heiser text provided a wonderful blueprint for how to gather the pertinent evidence from the system. In some cases we had to modify commands to suit our needs, or correct for syntax or logic errors, but overall the text was our most valuable resource during the preparation of this document.

In the end, we were able to cheaply and quickly perform an investigation, and come to a conclusion about the state of the suspect system. The investigation was not detrimental to the suspect system in any way. It was able to continue to perform its duties throughout the investigation, and we left the system in a fully operational state. The investigation was truly a success.

Bibliography

CERT Coordination Center (1999). Intruder Detection Checklist. URL:

http://www.cert.mil/techtips/intruder_detection_checklist.htm
CERT Coordination Center (1999). Steps for recovering from a UNIX Root Compromise.

URL: http://www.cert.mil/techtips/root_compromise.htm
Dittrich, David (2000). “Basic Steps in Forensic Analysis of Unix System”. URL:

http://staff.washington.edu/dittrich/talks/blackhat/blackhat/forensic.html
Gollmann, Dieter (1999). Computer Security. New York, NY: John Wiley & Sons Ltd.

QA76.9.A25G65 1999; ISBN 0-471-97844-2.

Kruse, Warren G., & Heiser, Jay G. (2002). Computer Forensics:Incident Response Essentials.

 New York, NY: Addison Wesley. QA76.9.A25 K78 2001; ISBN 0-201-70719-5.

Tobler, Michael J. (2001). Inside Linux. Indianapolis, IN: New Riders.

QA76.76.O63 T598 2001; ISBN 0-7357-0940-8

Volkerding, P., Reichard, K., & Johnson, E (1996). Linux: configuarion & installation.

New York, NY: MIS Press. QA76.76.O63 V64 1996; ISBN 1-55828-492-3

PAGE
2

