Unit 2 Slide 23

A precompiler or preprocessor as it is also known is a translator whose main purpose is to extend the capabilities of a programming language. As the prefix of its name indicates, the precompiler processes the statements of a program before the compiler does. A couple of questions that we may ask are what are these statements that the precompiler processes and why do we need them?

Precompilers processes the source text of a program file and acts on commands, called "preprocessor directives". These commands are embedded in the text. In languages of the C familiy, these directives begin with the character #.

Preprocessors provides three important services that enable users to make programs more modular, more easily readable, and easier to port to different computers. Among the most useful preprocessor commands we have the #include and #define. You use the #include to merge the contents of a file with a C or C++ source file. The #define command replaces one string with another. This feature, known as token replacement and macro processing, allows constant replacement and macro processing.

As we indicated before, the compiler typically invokes the preprocessor before beginning compilation, hence the name pre compiler, that is "before" the compiler. The precompiler may be a separate program or it may be the same compiler that acts in a dual role. First, it acts as a precompiler doing all the necessary text replacement called for by the directives. After finishing its work as a precompiler the compiler then begins its job as a compiler.

