
Relations 
(CS 228 class notes prepared by Ramon A. Mata-Toledo) 

Reading Assignments (Rosen) 

• Read Section 2.1 pages 117-118 on your textbook. 

• Read Section 8.1 pages 519-527 on your textbook 

 

Definition No. 1 (Cartesian product of two sets) 

Given two nonempty sets A and B we will call the Cartesian product of A and B (in this order) to the 
following set: 

{( , ) / }A B a b a A b B× = ∈ ∧ ∈  

 The elements (a,b) of the Cartesian product are called ordered pairs. The elements a and b are generally 
called the first coordinate (or component) and the second coordinate (or component) respectively.  

 
Example No. 1 

 A = {1, 2} and B = {a, b} then  

A x B = { (1,a), (1,b), (2, a), (2,b)} and B x A = {(a,1), (1,b),  (2,a), (2,b)}.  

The ordered pairs of the set A x B are : (1,a), (1,b), (2, a), and (2,b) 

The ordered pairs of the set B x A are: (a,1), (1,b),  (2,a),  and (2,b) 

Notice that (1,a) ∈ AxB and (1,a) ∉ BxA.  Therefore, AxB ≠ BxA (why?) 

In general, for any two sets A and B we have that A x B ≠ B x A 

Note No. 1 
Ordered pairs can be formally defined as follows: 

(a,b) = {{a}, {a,b}} 
  

From this definition we can observe that if a ≠ b then (a,b) ≠ (b,a).  This justifies the previous assertion 
that, in general, A x B ≠ B x A. ■ 

 

The next theorem allows us to define the equality of ordered pairs.  

 

Theorem No. 1 (equality of ordered pairs) 

Two ordered pairs (a,b) and (c,d) are equal their respective coordinates are equal. That is,  

(a,b) = (c,d) ↔ a = b ∧ c = d      ■ 

Note No. 2 

 If A = B then the Cartesian product A x B is generally denoted by A2. ■ 

 



 

Exercise No. 1 

 Given A = {0, 1, 2} and B = {x, y, z} what are the elements of A x B and B x A. How many elements 
are in the Cartesian product of each set? ■ 

 

Definition No. 2 (Binary relations between two given sets) 

 Let A and B be two nonempty sets. A binary relation R from A to B (in that order) is a nonempty subset 
of the Cartesian product of A and B. 

 If R A and xB⊂ ( , )x y R∈ then x is said to be R-related to y.  We can denote this by writing .xRy ■ 

Example No. 2 

Given the Cartesian product A x B = { (1,a), (1,b), (2, a), (2,b)}. Let’s consider R = {(1,a), (1,b), (2, a)}. 
Then we can say that 

1Ra since (1,a) ∈ R 

1Rb since (1,b) ∈ R 

2Ra since (2,a) ∈ R 

Notice that (2,b) ∉ R. In this case we can write 2 Rb . We read 2 Rb  as “2 is not R-related to b.” 

From Example No. 2 we can generalize and say that xRy ↔ (x,y) ∉ R.     ■ 

Note No. 3 

 Since any set is a subset of itself, in particular, we have that AxB ⊂ AxB. Therefore, the Cartesian 
product of two given set also defines a binary relationship between the sets.    ■ 

 

Definition No. 3 (Relation on a set A) 

 Any subset of the Cartesian product of AxA is called a relation on the set A or just a relation on A. ■ 

 
Exercise No. 2  

 Given the set A = {1,2,3}. State if the following sets are relations on A and explain why. 

{(1,1), (2,2),(3,3)} 

{(1,2), (2,3), (3,1),(3,2) 

{(1,1)} 

{1, 2} 

{1, 2, 3} 
             ■ 

 

A relation on a set A can be defined by some conditions that the elements of the ordered pairs need to 
satisfy. This is illustrated in the following example.     



Example No. 3 

 Let A = {1, 2, 3, 4} Find the elements of the relation on A defined as follows: {( , ) / }R a b a b= < . 

 AxA = {(1,1), (1,2), (1,3), (2,4), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4)} 

Then R = {(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}         ■ 

 

Properties of Relations on a set A. 

  Let A be a set (A≠∅) and R a relation on A.  

Definition No. 4 (reflexive relation) 

We will say that a relation R is reflexive if and only if for every element a∈A we have that aRa. That is, 
(a,a) ∈ R for any element a∈A.          ■ 

Definition No. 5 (symmetric relation) 

 We will say that a relation R is symmetric if and only if aRb implies bRa for any element a,b ∈ A. In 
other words, a relation is symmetric whenever (a,b)∈R we also have (b,a) ∈ R.    ■ 

Definition No. 6 (transitive relation) 

 We will say that a relation R is transitive if and only if aRb and bRc implies aRc for any element 
a,b,c∈A. In other words, if (a,b)∈R and (b,c)∈R then (a,c)∈R for all elements a,b,c∈ A.   ■ 

Example No. 4 (from Rosen) 

 Given A = {1, 2, 3, 4} and the relations shown below find which relations are a) reflexive b) symmetric 
and c) transitive. 

R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)} 

R2 = {(1,1), (1,2), (1,1)} 

R3 = {(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)} 

R4 = {(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)} 

R5 = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)} 

R6 = {(3,4)} 
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