Relations (CS 228 class notes prepared by Ramon A. Mata-Toledo)

Reading Assignments (Rosen)

- Read Section 2.1 pages 117-118 on your textbook.
- Read Section 8.1 pages 519-527 on your textbook

Definition No. 1 (**Cartesian product of two sets**)

Given two nonempty sets *A* and *B* we will call the Cartesian product of *A* and *B* (in this order) to the following set:

$$
A \times B = \{(a, b) / a \in A \land b \in B\}
$$

 The elements (*a*,*b*) of the Cartesian product are called ordered pairs. The elements *a* and *b* are generally called the first coordinate (or component) and the second coordinate (or component) respectively.

Example No. 1

 $A = \{1, 2\}$ and $B = \{a, b\}$ then

A x B = { (1,a), (1,b), (2, a), (2,b)} and B x A = {(a,1), (1,b), (2,a), (2,b)}.

The ordered pairs of the set A x B are : $(1,a)$, $(1,b)$, $(2, a)$, and $(2,b)$

The ordered pairs of the set B x A are: $(a,1)$, $(1,b)$, $(2,a)$, and $(2,b)$

Notice that $(1,a) \in AxB$ and $(1,a) \notin BxA$. Therefore, $AxB \neq BxA$ (why?)

In general, for any two sets A and B we have that $A \times B \neq B \times A$

Note No. 1

Ordered pairs can be formally defined as follows:

$$
(a,b) = \{\{a\},\{a,b\}\}\
$$

From this definition we can observe that if $a \neq b$ then $(a,b) \neq (b,a)$. This justifies the previous assertion that, in general, $A \times B \neq B \times A$.

The next theorem allows us to define the equality of ordered pairs.

Theorem No. 1 (equality of ordered pairs)

Two ordered pairs (a,b) and (c,d) are equal their respective coordinates are equal. That is,

$$
(a,b) = (c,d) \leftrightarrow a = b \land c = d
$$

Note No. 2

If A = B then the Cartesian product A x B is generally denoted by A^2 .

Exercise No. 1

Given $A = \{0, 1, 2\}$ and $B = \{x, y, z\}$ what are the elements of A x B and B x A. How many elements are in the Cartesian product of each set? ■

Definition No. 2 (Binary relations between two given sets)

Let *A* and *B* be two nonempty sets. A binary relation *R* from *A* to *B* (in that order) is a nonempty subset of the Cartesian product of *A* and *B*.

If $R \subset AxB$ and $(x, y) \in R$ then *x* is said to be R-related to *y*. We can denote this by writing *xRy*.

Example No. 2

Given the Cartesian product A x B = { (1,a), (1,b), (2, a), (2,b)}. Let's consider R = {(1,a), (1,b), (2, a)}. Then we can say that

> 1Ra since $(1,a) \in R$ 1Rb since $(1,b) \in R$ 2Ra since $(2,a) \in R$

Notice that $(2,b) \notin R$. In this case we can write $2Rb$. We read $2Rb$ as "2 is not R-related to b."

From Example No. 2 we can generalize and say that $xRy \leftrightarrow (x,y) \notin R$.

Note No. 3

Since any set is a subset of itself, in particular, we have that $AxB \subset AxB$. Therefore, the Cartesian product of two given set also defines a binary relationship between the sets.

Definition No. 3 (Relation on a set A)

Any subset of the Cartesian product of AxA is called a relation on the set A or just a relation on A. ■

Exercise No. 2

Given the set $A = \{1,2,3\}$. State if the following sets are relations on A and explain why.

 $\{(1,1), (2,2), (3,3)\}\$ $\{(1,2), (2,3), (3,1), (3,2)\}$ $\{(1,1)\}\$ $\{1, 2\}$

 $\{1, 2, 3\}$

A relation on a set A can be defined by some conditions that the elements of the ordered pairs need to satisfy. This is illustrated in the following example.

■

Example No. 3

Let $A = \{1, 2, 3, 4\}$ Find the elements of the relation on A defined as follows: $R = \{(a, b) / a < b\}$. AxA = { $(1,1)$, $(1,2)$, $(1,3)$, $(2,4)$, $(2,1)$, $(2,2)$, $(2,3)$, $(2,4)$, $(3,1)$, $(3,2)$, $(3,3)$, $(3,4)$, $(4,1)$, $(4,2)$, $(4,3)$, $(4,4)$ } Then R = { $(1,2)$, $(1,3)$, $(1,4)$, $(2,3)$, $(2,4)$, $(3,4)$ }

Properties of Relations on a set A.

Let A be a set $(A \neq \emptyset)$ and R a relation on A.

Definition No. 4 (reflexive relation)

We will say that a relation R is reflexive if and only if for every element a∈A we have that aRa. That is, $(a,a) \in R$ for any element $a \in A$.

Definition No. 5 (symmetric relation)

We will say that a relation R is symmetric if and only if aRb implies bRa for any element $a, b \in A$. In other words, a relation is symmetric whenever $(a,b) \in R$ we also have $(b,a) \in R$.

Definition No. 6 (transitive relation)

We will say that a relation R is transitive if and only if aRb and bRc implies aRc for any element a,b,c∈A. In other words, if $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$ for all elements $a,b,c \in A$.

Example No. 4 (from Rosen)

Given $A = \{1, 2, 3, 4\}$ and the relations shown below find which relations are a) reflexive b) symmetric and c) transitive.

 $R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}\$ $R_2 = \{(1,1), (1,2), (1,1)\}\$ $R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}\$ $R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$ $R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}\$ $R_6 = \{(3,4)\}\$

References

The main reference is Discrete Mathematics and Its Applications by Rosen. However, exercises or examples have been adopted from the remaining books listed in this section.

- 1) Discrete Mathematics and Its Applications by K. H. Rosen. 6th Ed. McGraw-Hill, 2007
- 2) Introduccion a la Teoria de Conjuntos by L. Oubiña. Editorial Universitaria de Buenos Aires,1965. (Spanish version only)
- 3) Discrete Mathematics with Applications by S. Epp. 3rd Ed. Brook/Cole, 2004.

4) 2000 Solved problems in Discrete Mathematics by S. Lipschutz and M. C. Lipson. Schaum's Solved Problem Series. 1992.