Study Guide for the Final Exam CS-227, Spring 2009

© 2009 Charles Abzug

NOTE that the material presented here is intended to assist you in your review and study of the course material. Overall, you are responsible for:

- All of the material in the assigned readings, whether or not it was covered in class.
- All of the material in the assigned homework problems.
- All of the material that was covered in class, whether or not it was also included in the assigned readings.

NOTE also that the Final Exam is **<u>Cumulative</u>**.

Material Covered after the Cutoff Point for the Mid-Term:

Elementary Number Theory

- 1. Divisibility (Rosen's Section 3.4)
 - a. Factor: one number that divides another
 - b. Multiple
 - c. The Division Algorithm: Dividend, Divisor, Quotient, and Remainder
 - d. Modular Arithmetic
 - e. Congruence
 - f. Pseudorandom Numbers
 - g. Elementary Cryptography
 - i. The Shift Cipher (*example*: The Caesar Cipher)
 - ii. The Affine Cipher
- 2. Prime Numbers, and the Greatest Common Divisor (Rosen's Section 3.5)
 - a. Two types of integers:
 - i. Prime Numbers
 - ii. Composite Numbers
 - b. Fundamental Theorem of Arithmetic
 - c. Searching for prime factors of a number s via brute force (trying all prime divisors up to the square root of the number)
 - d. Greatest Common Divisor
 - e. Least Common Multiple
 - f. Pairwise Relative Primality
- 3. Representation of Integers (Rosen's Section 3.6
 - a. Base Expansion of Integers

18 Mar 2009

- b. Decimal Expansion
- c. Binary Expansion)
- d. Octal Expansion
- e. Hexadecimal Expansion
- f. Operations on Integers
 - i. Addition
 - ii. Multipliction
 - iii. Integer Division
 - iv. Modular Division
 - v. Modular Exponentiation
- g. The Euclidian Algorithm
- 4. Applications of Number Theory (Rosen's Section 3.7
 - a. The Extended Euclidian Algorithm
 - b. Linear Congruences The Chinese Remainder Theorem
 - c. Computer Arithmetic with Large Integers
-)
- 5. Relations (Rosen's Section 8.1)
 - a. Binary Relations
 - b. Functions as Relations
 - c. Relations on a Set
 - d. Properties of Relations
 - i. Reflexive Relations
 - ii. Symmetric Relations
 - iii. Antisymmetric Relations
 - iv. Asymmetric Relations
 - v. Transitive Relations
 - e. Combinations of Relations
 - i. Union
 - ii. Intersection
 - iii. Exclusive Or
 - iv. DifferenceComposition of Relations
- 6. Relations among Elements from More Than TWO Sets (Rosen's Section 8.2)
 - a. Relations of Degree Greater Than Two
 - b. The Relational Data Model
 - i. Records composed of *n*-tuples
 - ii. Fields
 - iii. Tables, Columns, Attributes
 - iv. Primary Key
 - v. Composite Key
 - vi. Extension and Intension of a relation
 - c. Operations on Relations of degree greater than two:

- 1. Selection
- 2. Projection
- 3. Join
- d. Structured Query Language (SQL)
- 7. Representation of a Relation (Rosen's Section 8.3)
 - a. Matrix
 - b. Digraph
- 8. Basics of Counting (Rosen's Section 5.1)
 - a. Product Rule
 - b. Sum Rule
 - c. Inclusion-Exclusion
- 9. The Pigeonhole Principle (Rosen's Section 5.2)
- 10. Permutations and Combinations (Rosen's Section 5.3)
 - a. Permutations
 - b. Combinations
- 11. Binomial Theorem (Rosen's Section 5.4)
- 12. Representation of Numbers, and the Performance of Arithmetic in the Digital Computer (my tutorial on the subject)
 - a. Binary Representation of Integers
 - i. "Unsigned" (i.e., Non-Explicitly-Signed) Numbers
 - ii. Ones'-Complement
 - iii. Two's-Complement
 - iv. Signed-Magnitude
 - v. Excess-N
 - b. Notation for Arithmetic Operations:
 - i. Addition: Augend, Addend, Sum
 - ii. Subtraction: Minuend, Subtrahend, Difference
 - iii. Multiplication: Multiplicand, Multiplier, Product
 - iv. Division: Dividend, Divisor, Quotient, Remainder
 - c. Addition of Binary Integers:
 - i. Carry Bits
 - ii. Content of Sum Register
 - iii. Detection of Overflow, if Present
 - iv. Disposition of the Carry-out Bit from Addition in the Leftmost Bit Position
- 13. IEEE 754 Floating-Point Number Representation

Material Covered BEFORE the Cutoff Point for the Mid-Term:

Logic and Proofs

- 14. Propositional Logic (Rosen's Section 1.1)
 - a. Operations:
 - i. Conjunction (logical AND)
 - ii. Disjunction (logical OR *i.e.*, <u>inclusive</u> OR)
 - iii. Exclusive OR
 - iv. Conditional Statements (Implication)
 - v. Biconditional
 - b. Alternative notations
 - c. Truth Tables (Tables 1 through 6 and Table 8 in Section 1.1) NOTE that I require that your Truth Tables be written with zeroes and ones in place of F's and T's, and that the rows be in lexicographic order.
 - d. Logic Puzzles
- 15. Propositional Equivalence (Rosen's Section 1.2): Proof of equivalence via Truth Table
- 16. Predicates, Propositional Functions, and Quantifiers (Rosen's Section 1.3)
 - a. Universal Quantifier
 - b. Existential Quantifier
 - c. Negation of a Quantified Expression
- 17. Validity of Arguments, Rules of Inference, and Fallacies (Rosen's Section 1.5)
 - a. Table 1 on page 66
- 18. Proofs (Rosen's Section 1.6)
 - a. Terminology:
 - i. Axiom or Postulate
 - ii. Proposition
 - iii. Theorem
 - iv. Lemma
 - v. Corollary
 - vi. Conjecture
 - vii. Converse
 - viii. Inverse
 - ix. Contrapositive

30 Apr 2009

- b. Direct Proof
- c. Indirect Proof
- d. Proof by Contraposition
- e. Proof by Contradiction

Basic Structures: Sets, Functions, Sequences, and Sums

19. Sets (Rosen's Section 2.1): DEFINITIONS and NOTATION

- a. Set
- b. Subset
- c. Proper Subset
- d. Power Set
- 20. Set Operations (Rosen's Section 2.2)
 - a. Union
 - b. Intersection
 - c. Cartesian Product
 - d. Venn Diagram
 - e. Set Identities (Table 1 on page 124)
 - f. Principle of Inclusion-Exclusion

21. Functions (Rosen's Section 2.3)

- a. Definition of FUNCTION
- b. One-to-One (Injective)
- c. Onto (Surjective)
- d. One-to-One Correspondence (Bijective)
- e. Increasing and Strictly Increasing
- f. Decreasing and Strictly Decreasing
- g. Invertible Function
- h. Composition of Functions
- i. Graph of a Function
- j. Special Functions:
 - i. Floor Function
 - ii. Ceiling Function
 - iii. Factorial
- 22. Sequences and Summations (Rosen's Section 2.4)
 - a. Sequence: DEFINITION
 - b. Geometric Progression
 - c. Arithmetic Progression
 - d. Special Integer Sequences
 - e. Summations
 - f. Cardinality
 - g. Countability and Uncountablility of an infinite set