CS-627, Cryptology:
Assignments

Charles Abzug, Ph.D.

Department of Computer Science
James Madison University
Harrisonburg, VA 22807

Cell Phone: 443-956-9424,
E-mail: CharlesAbzug@ACM.org

Home Page: https://users.cs.jmu.edu/abzugcx/public/index.htm

© 2007 Charles Abzug

Programming Project 1
PART I

Purpose: (i) to Compile statistics on frequency of occurrence of individual letters and
letter groups in a Text, and
(ii) to prepare a clean plaintext file from a crude source file for use as input
to another program that will encrypt the text.

Summary of Program Behavior:
Queries the user to identify which file (Index Number) on which to operate.
Continually informs the user of the progress of program execution.

Takes a text file as input — whether ASCII or Unicode (either/or, doesn't
have to handle both).

Strips out non-alpha characters from the input text file, and outputs an
all-lower-case alpha file for subsequent use as input to the
PART IZa encryption program.

Counts the frequency of occurrence of each individual letter of plaintext.

Counts the number of instances of every possible digram, trigram, tetragram,
and pentagram.

Produces a screen display and an output file reporting the statistical findings, as
well as the date-and-time stamps of the program progress
milestones.

27-Mar-2007 © 2007 Charles Abzug 2

Programming Project 1
PART I

(1) Locate and compile text file groups from at /east five distinct sources, such as:

High-literary-quality news reports or essays (e.g., New York Times, especially
the Sunday magazine section; National Review. Wall Street
Journal)

Classical works of distinguished authorship (e.g., Shakespeare, Melville,
Stevenson, Poe, Clemens, Dickens, Tennyson)

Scientific writing (e.g., Scientific American, Science, Nature, or a journal
specific to some particular scientific discipline, such as Journal of
Physiology, Mathematical Gazette, Geographic and Global Issues
Quarterly)

Computer Science (e.g., IEEE Computer, Communications of the ACM, Dr.
Dobbs’ Journal)

Other sources of distinctly different content

(2) Each sample of text to contain at least 1,000 alphabetic characters.

(3) Save the original source file in whatever form you found it, e.g., .pdf, .doc, or
.mht (except for .htm or .html documents, which you should save in .mht
format).

27-Mar-2007 © 2007 Charles Abzug 3

Programming Project 1
PART I (continued):

(4) NAMING CONVENTIONS for DATA files (index 7):

TEXT-SOURCE (for each textual source): source-n.htm, source-n.html,
source-n.mht, source-n.pdf,
source-n.doc, or whatever file type may
be appropriate

INPUT: crude-plaintext-n.txt Includes formatting (line feed, tabs, efc.),
indentation, spacing, non-alpha chars

OUTPUT,: processed-plaintext-n.txt Lower-case alphabetic characters
exclusively: upper case
converted to lower case, and
everything else stripped off.

OUTPUT,: statistics-n.txt Frequency of occurrence (%) for each letter
Number of instances of each non-zero-
occurrence digraph

Number of instances of each non-zero-

occurrence trigraph
27-Mar-2007 © 2007 Charles Abzug 4

Programming Project 1
PART I (continued):

(5) NAMING CONVENTION for PROGRAM file:

crypto-project-part-I-yourdMUusername

For example, had I written the program: crypto-project-part-I-abzugcx

27-Mar-2007 © 2007 Charles Abzug 5

Programming Project 1
PART I (continued):

(6) Program Behavior (not necessarily in chronological order):
Queries the user for a two-decimal-digit Index Number (7).
Measures and informs user of the size (number of characters) of the input file.

Informs the user of current activity — updated every 5 seconds, and includes in
each update message the current date and 24-hr-format time.

Informs the user of major program milestones, via time-stamped messages output
to the display, such as:

(a) Program starting to run (date, and time in 24-hr format).

(b) Generating an output file consisting of All-Lower-Case-Alpha (date-time).

(c) Completing the generation of the All-Lower-Case-Alpha processed-plaintext
file (date-time).

(d) Beginning to Count the number of occurrences of the individual letters and
letter groups (date-time).

(e) Completed the counting of letter and letter-group occurrences (date-
time).

(f) Outputting the processed-plaintext file (date-time).

(g) Adding milestone-achievement information to the statistics file (date-time).

(h) Printing plaintext statistics and program execution information (date-time).

(h) Program operation successfully completed; exiting at: Date-Time.
27-Mar-2007 © 2007 Charles Abzug 6

Programming Project 1
PART I (continued):

(7) Specification for Content and Format of Statistical Output File:
(a) Name of INPUT file (/.e., "crude-plaintext-n.txt").
(b) Name of OUTPUT processed-plaintext file (/.e., "processed-plaintext-n.txt")
(c) Total number of characters in INPUT file.
(d) Number of Alphabetic characters in both the INPUT and the OUTPUT files.

(e) Letters in alphabetic order, with number and percentage occurrence of each
(occurrences aligned on units digit, percentages calculated to
precision of 0.01%, aligned on decimal point).

(f) Digrams actually found, sorted into alphabetic order, with number of
occurrences of each, aligned on units digit.

(9) For each digram, show all trigrams found having the same starting characters
and the number of occurrences of each. The trigrams should be
indented so that they are shown to the right of the digram
information, in the lines immediately below the digram.

(h) Similarly for tetragrams and pentagrams.

(i) A separate listing of all digrams and the number of occurrences of each,
sorted in decreasing order of number of occurrences; same for
trigrams, tetragrams, and pentagrams.

(j) All of the milestones shown to the user during program execution.

27-Mar-2007 © 2007 Charles Abzug 7

Programming Project 1
PART I (continued):

Sample Output:

INPUT file: crude-plaintext-99.txt.
OUTPUT file: processed-plaintext-99.txt

Total number of characters in INPUT file: 14,267
Number of Alphabetic characters present: 12,348

Occurrences in the plaintext of individual letters:
a 1,017 8.23%

b 185 1.49%

(continued)

27-Mar-2007 © 2007 Charles Abzug

Programming Project 1
PART I (continued):

Sample Output (continued):

Occurrences in the plaintext of letter groups (alphabetic order):

ab 47
abd 12
abn 3
abo 21
abor 9
abori 3
aborig 3
abort 5
an 8
ann 6

(continued)

27-Mar-2007 © 2007 Charles Abzug

Programming Project 1
PART I (continued):

Sample Output (continued):

30 Feb 2020, 0631 hrs: Program starting to run.
30 Feb 2020, 0642 hrs: Generating the processed-plaintext output file.

FURTHER INSTRUCTION:

You must also provide a narrative file (either .doc, .Atm, or .pdf) describing
the details of your approach. Your narrative should give an overview of how you
tackled the problem, as well as a table listing all defined constants, all named
variables, and all functions and classes that you originated. If the name of any

of these items is less than fully evocative of its purpose, then add a brief
explanation.

File name: narrative-crypto-project-part-I-yourJMUusername.pdf
27-Mar-2007 © 2007 Charles Abzug 10

Programming Project 1
PART IT: Vigenere Encryption and Decryption

Purpose: (1) To encrypt a plaintext file using the Vigenére technique, based upon an
encryption key supplied by the user.

(2) To decrypt a ciphertext file that had originally been encrypted using the
Vigenére technique, based upon a decryption key supplied by the
user.

PART IIa: Vigenere ENcryption

Program Behavior:

(1) Queries the user for the two-decimal-digit Index Number (#) associated with the
plaintext message input: an ASCII text file composed ENTIRELY of lower-case
Alpha characters (/.e., one of the output-files from PART I).

(2) Checks the user-specified file to see whether or not it meets the specified input
conditions. If not, outputs to the user an appropriately-worded message, and
then aborts.

27-Mar-2007 © 2007 Charles Abzug 11

Programming Project 1
PART IIa: Vigenére Encryption (continued)

(3) Queries the user for a key word or key phrase, which MAY NOT include numerals,
symbols or non-printing characters, BUT MAY include spaces and tabs, and may
be of mixed case. If the user-supplied key word or key phrase does not meet
the specification, outputs to the user an appropriately-worded error message,
and then aborts.

(4) Computes the EFFECTIVE Key-Word or Key-Phrase by converting the input to all-
lower-case and stripping off the second and subsequent appearances of any
character present more than once in the input word or phrase.

(5) Outputs the ciphertext in the form of an all-upper-case-alpha ASCII file (plus
spaces and/or tabs, and carriage-returns and line-feeds or newline characters).

27-Mar-2007 © 2007 Charles Abzug 12

Programming Project 1
PART IIa: Vigenére Encryption (continued)

(6) NAMING CONVENTIONS for PROGRAM files:

(a) You will have EITHER one program that can do BOTH encryption & decryption,
OR two programs, ONE for encryption and ONE for decryption.

(b;) Your choice: ONE program: crypto-project-part-II-yourdJMUusername
For example, had I written one program: crypto-project-part-II-abzugcx

(b,) Alternative:
TWO programs: crypto-project-part-IIA-yourJMUusername (for ENcryption)

and crypto-project-part-IIB-yourJMUusername (for DEcryption)

For example, had I written fwo programs: crypto-project-part-IIA-abzugcx
and crypto-project-part-IIB-abzugcx

27-Mar-2007 © 2007 Charles Abzug 13

Programming Project 1
PART IIa: Vigenére Encryption (continued)

(7) NAMING CONVENTIONS for DATA files (index 7):

PLAINTEXT SOURCE (input file): processed-plaintext-n.txt (output from pt I)
Lower-Case Alphabetic characters
exclusively. upper case has been
converted by the PART I program to
lower case, and everything else has
been stripped off.

OUTPUT,: ciphertext-n.txt Upper-Case alphabetic characters
FIVE-character groups
THREE-character space separating each pair of
groups
Length of each line not to exceed 80 characters
No partial blocks.

OUTPUT,: enciphering-info-n.txt Original user-supplied raw encryption key.

Effective encryption key following
processing.

27-Mar-2007 © 2007 Charles Abzug 14

Programming Project 1
PART ITb: Vigenére DEcryption

(1) Queries the user for the two-decimal-digit Index Number (#) associated with the
ciphertext message input: an ASCII text file composed ENTIRELY of five-
character blocks of upper-case Alpha characters, plus spaces and newline or
carriage-return/linefeed characters.

(2) Checks the user-specified file to see whether or not it meets the specified input
conditions. If not, outputs to the user an appropriately-worded message, and
then aborts.

(3) Queries the user for a key word or key phrase, which MAY NOT include numerals,
symbols or non-printing characters, BUT MAY include spaces and tabs, and may
be of mixed case. If the user-supplied key word or key phrase does not meet
the specification, outputs to the user an appropriately-worded error message,
and then aborts.

(4) Computes the EFFECTIVE Key-Word or Key-Phrase by converting the input to all-
lower-case and stripping of f the second and subsequent appearances of any
character present more than once in the input word or phrase.

27-Mar-2007 © 2007 Charles Abzug 15

Programming Project 1
PART IIb: Vigenére Decryption (continued)

(5) Outputs the plaintext in the form of an ASCIT file.
(7) NAMING CONVENTIONS for DATA files (index n):

CIPHERTEXT SOURCE (input file): ciphertext-n.txt (output from pt II)
Upper-case alphabetic characters, plus
spaces and linefeeds.

OUTPUT,: deciphered-text-n.txt Lower-Case alphabetic characters:
FIVE-character groups
THREE-character space separating each pair of
groups
Length of each line not to exceed 80 characters
No partial blocks.

OUTPUT,: deciphering-info-n.txt Original user-supplied raw decryption key.

Effective decryption key following
processing.

27-Mar-2007 © 2007 Charles Abzug 16

Programming Project 1
PART IIb: Vigenére Decryption (continued)

FURTHER INSTRUCTION:

You must also provide a narrative file (either .doc, .Atm, or .pdf) describing
the details of your approach. Your narrative should give an overview of how you
tackled the problem, as well as a table listing all defined constants, all named
variables, and all functions and classes that you originated. If the name of any

of these items is less than fully evocative of its purpose, then add a brief
explanation.

File name: narrative-crypto-project-part-II-yourJMUusername.pdf

27-Mar-2007 © 2007 Charles Abzug 17

Programming Project 1
PART IIT: Cryptanalysis of a Vigenére Encipherment

Purpose: To cryptanalyze a Vigenére-encrypted ciphertext, recovering the effective
key originally used to encrypt the plaintext (/.e., the original key
with duplicate letters stripped off), as well as the plaintext.

Program Behavior:

(1) Calculates the overall Index Of Coincidence (IOC) of a Vigenére—encrypted
ciphertext.

(2) Determines the effective length of the Vigenére encryption key: two suggested
approaches:

(a) Use the mathematical formula derived by William Friedman to calculate a
best estimate of keylength, and then try out several nearby values
looking for best fit. (The "educated guess" method)

(b) Try all possible values of effective keylength from 2 through 26,
calculating for each possible keylength value the IOC for each
monoalphabetic substitution, and looking for the keylength value that
gives the best fit. (The "brute force" method)

27-Mar-2007 © 2007 Charles Abzug 18

Programming Project 1
PART IIT: Cryptanalysis of a Vigenére Encipherment (continued)

(3) Outputs two files:

OUTPUT,: cryptanalytic-progression-n.txt shows the steps taken
and each successive calculation performed, e.g.:

Trying keylength 4.

IOC = 4.73, 4.94, 4.47, 4.69
Trying keylength 5.

IOC = 4.99, 5.23, 5.14, 4.83, 5.08

FINAL KEYLENGTH = 10
EFFECTIVE KEYWORD = hieronymus

OUTPUT,: recovered-plaintext-n.txt shows the Vigenere decryption
of the cryptanalyzed ciphertext
using the effective keyword

27-Mar-2007 © 2007 Charles Abzug 19

Programming Project 1
PART IIT: Cryptanalysis of a Vigenére Encipherment (continued):

(4) NAMING CONVENTION for PROGRAM file:

crypto-project-part-III-yourJMUusername

For example, had I written the program: crypto-project-part-III-abzugcx

FURTHER INSTRUCTION:

You must also provide a narrative file (either .doc, .Atm, or .pdf) describing
the details of your approach. Your narrative should give an overview of how
you tackled the problem, as well as a table listing all defined constants, all
named variables, and all functions and classes that you originated. If the

name of any of these items is less than fully evocative of its purpose, then
add a brief explanation.

File name: narrative-crypto-project-part-III-yourJMUusername.pdf

27-Mar-2007 © 2007 Charles Abzug 20

Programming Project 1
PART IV : Rivest-Shamir-Adelman (RS5A) encryption and decryption

Purpose: (1) To generate a pair of prime numbers, p and ¢:

(2) To make use of the two primes to generate a pair of RSA keys, one
private and the other public, and finally
(3) To use the two keys to encrypt and decrypt a plaintext message.

PART IVa: Generation of an RSA Key Pair

Program Behavior:

(1) Generates a random number of 32-bit length: p.

(2) Tests the number for primality:
(a) "Sieve of Eratosthenes"
(b) Fermat Test.

NOTE: There may be other primality-testing techniques that are practicable
for 32-bit primes, but for this exercise you should use a technique that is

27-Mar-2007 © 2007 Charles Abzug 21

Programming Project 1
PART IVa: Generation of an RSA Key Pair (continued):

readily extensible for use with 512-bit primes. Thus, for example, with a 32-
bit randomly-generated number, it may be practical to test for primality by
dividing the number by all known primes up to 16 bits in length. However,
since this technique cannot be extended to 512-bit numbers, you should not

use it.
(3) Repeats steps 1 and 2 to produce a second 32-bit prime: g¢.

(4) Defines the first member of an RSA key pair, a public key, as the pair of
numbers consisting of:

(a) The 4th Fermat number: 216 + 1
(b) n=peg

(5) Applies the Extended Euclidian Algorithm to the 4*h Fermat number to obtain its
multiplicative inverse modulo (p — 1) ¢ (¢ - 1)

27-Mar-2007 © 2007 Charles Abzug 22

Programming Project 1

PART IVa: Generation of an RSA Key Pair (continued):

(6) Defines the second member of the RSA key pair, the private key, as the pair of
numbers consisting of:

(a) The multiplicative inverse of the 4™h Fermat number, obtained in the
previous step.

(b)n=peg

(7) Data Output Files: each an ASCII file consisting of two lines: exponent in first
line, modulus in second line.

RSA -private-key - yourJMUusername
RSA-public-key- yourdMUusername

(8) FILE NAMING CONVENTIONS for PROGRAM file:

crypto-project-part-IVa- yourdMUusername

For example, had I written the program: crypto-project-part-IVa-abzugcx

27-Mar-2007 © 2007 Charles Abzug 23

Programming Project 1

PART IVb: RSA Encryption and Decryption

Program Behavior: ENCRYPTION MODE

(1) Queries the user for the two-decimal-digit Index Number (n) associated with the
plaintext message input: an ASCII text file composed ENTIRELY of lower-
case Alpha characters (i.e., one of the output-files from PART I).

(2) Checks the user-specified file to see whether or not it meets the specified input
conditions (see PART I). If not, outputs to the user an appropriately-worded
message, and then aborts.

(3) Pads the plaintext file to a multiple of the 32-bit block size to be used for RSA

encryption, using one of the padding algorithms described in Fergusson and
Schneier's Practical Cryptography.

(4) Queries the user for the file-identifier of a file holding one key of a matched
R5A key pair.

27-Mar-2007 © 2007 Charles Abzug 24

Programming Project 1

PART IVb: RSA Encryption and Decryption: ENCRYPTION MODE (continued)

(5) Takes each block of the padded plaintext file, and encrypts it using the specified
key. Do NOT use a built-in exponentiation function to accomplish the
encryption. Instead, utilize the algorithm shown in class, successively squaring
the 32-bit plaintext block and then immediately reducing the product by the
modulus 7. Once you have produced all of the squares up to the highest
degree necessary, then multiply the individual values together one pair at a
time and do a modulo 7 reduction each time.

(6) Deposit the ciphertext blocks in the output file. Note that the output file
should be a binary or hex file, since there is no guarantee that the process of
exponentiation will result in printable ASCII characters.

(7) NAMING CONVENTION FOR DATA OUTPUT FILE:

RSA-encrypted-ciphertext-ns.bin

27-Mar-2007 © 2007 Charles Abzug 25

Programming Project 1

PART IVb: RSA Encryption and Decryption

Program Behavior: DECRYPTION MODE

(1) Queries the user for the two-decimal-digit Index Number () associated with the
RS5A-encrypted ciphertext file.

(2) Queries the user for the file-identifier of a file holding one key of a matched
RS5A key pair. This file must contain the companion key to the one that had
been used for the encryption.

(3) Decrypts the file using the identical mathematical procedure that had been used
to encrypt it, except for the difference in key.

(4) Removes the padding that had augmented the plaintext file immediately prior to
encryption.

27-Mar-2007 © 2007 Charles Abzug 26

Programming Project 1

PART IVb: RSA Encryption and Decryption: DECRYPTION MODE (continued)

(5) Writes the decrypted and pad-free plaintext into an ASCII text file.

(6) NAMING CONVENTION FOR DATA OUTPUT FILE: RSA-decrypted-n.txt

FURTHER INSTRUCTION:

You must also provide a narrative file (either .doc, .Atm, or .pdf) describing
the details of your approach. Your narrative should give an overview of how
you tackled the problem, as well as a table listing all defined constants, all
named variables, and all functions and classes that you originated. If the
name of any of these items is less than fully evocative of its purpose, then
add a brief explanation.

File name: narrative-crypto-project-part-IV-yourJMUusername.pdf

27-Mar-2007 © 2007 Charles Abzug 27

27-Mar-2007

END

© 2007 Charles Abzug

28

	CS-627, Cryptology:�Assignments
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	Programming Project 1
	END
	NOTES for NEXT TIME
	NOTES for NEXT TIME (continued)
	Group Projects 2
	Programming Project 1
	Programming Project 1

