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Introduction 
 
Some futurists have speculated that thousands of years into the future the human race may 

evolve to the point where our legs will atrophy, losing much of their size, power and endurance.  The 
reason for this is that in modern society we tend to rely heavily on mechanical devices, such as 
automobiles, for much of our transportation needs, thus making far less use of our leg muscles than did 
our ancestors.  Thus, our legs might eventually become almost vestigial appendages, much like the 
appendix in our gastrointestinal tract. 

 
We have already seen during my lifetime a substantial atrophy of some of the brain function of 

the modern college student.  When I went to college, every student was able to carry out simple 
addition, subtraction, multiplication and division accurately and at a reasonable rate of speed.  At that 
time, there were no electronic calculators.  A professional accountant or bookkeeper, actuary, or 
mathematician might be fortunate enough to have access to a contrivance which would allow him/her 
merely to enter the numbers and would then take over the performance of the calculation.  Such a 
contrivance typically weighed twenty-five pounds or more, took up a goodly portion of the space on a 
desktop, was operated either by mechanical power through the repetitive pulling of a lever over a 
distance of a foot or more and with a spring return, or by electrical power provided through the regular 
power line, just the same as it is provided to a refrigerator.  The contrivance also made a lot of noise and 
was very slow.  Unless we had a lengthy column of numbers, it was usually preferable to perform 
calculations by hand with the aid of pencil and paper. 

 
Today, it is my practice to ask my students in college to perform what I consider to be simple 

arithmetic calculation using their old-fashioned, built-in computer (i.e., their brain).  When I do this, I 
usually encounter a chorus of indignant protest.  The modern student is accustomed already from 
elementary school to performing arithmetic using an electronic calculator.  Powered either by small 
batteries or via photovoltaic generation of electricity from ambient light, the device is both small and 
light enough to be carried conveniently in the hand, can be taken either to the beach or to the top of Mt. 
Everest or anywhere else where 120-Volt or other standard power from the electric utility is not readily 
available, and produces reliable, accurate results, provided that the data are input correctly. 

 
 
 
 
 
A major portion of the operations that take place in a digital computer consists of calculations 

that are carried out upon numeric data.  These operations constitute digital arithmetic.  The digital 
arithmetic operations must be augmented by a variety of support operations that are necessary to enable 
the calculations to occur.  The vast majority of these calculations consist of simple arithmetic, and are 
conceptually very easy for even the layman to understand;  they do not constitute a challenge to the 
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Computer Scientist.  However, despite the fact that the digital arithmetic operations are conceptually 
simple, the detailed understanding of how these operations are carried out internally in the machine is 
something of a challenge for the beginning student of Computer Science.  Once mastered, however, this 
subject brings to the Computer Scientist substantial insight into how digital computers work as well as 
into some of the programming techniques that must be employed to assure that the calculations 
performed by the computer yield answers of the requisite degree of accuracy.  Therefore, this subject is 
important to study. 

 
The overall subject matter can be broken down into two principal topics.  First, it is necessary to 

understand the various principal ways in which numbers are represented in the digital computer.  The 
student should be able to demonstrate this understanding by relating the internal representation of a 
number to the actual value of the number in each case.  In addition, for each form of number 
representation, there are one or sometimes more ways in which it is possible for arithmetic operations to 
be carried out.  The next challenge for the Computer Scientist is therefore to understand how each kind 
of arithmetic operation is carried out for each of the schemes of number representation.  He/she must 
also understand what answer will be produced by the computer logic circuits in each case, as well as the 
potential for error occurring in the results.  Finally, the Computer Scientist must also be able through a 
combination of hardware and software to detect and handle initially erroneous results, and to take 
appropriate action to assure that the final results attained under defined circumstances will be correct. 

 
This tutorial covers in detail only part of the subjects of number representation  and digital 

arithmetic.  It is intended to convey a thorough understanding of both subjects at least for integer 
numbers and for the closely related fixed-point numbers.  Floating-point numbers, however, are covered 
only insofar as their representation in the computer is concerned.  This will provide the basis from which 
the student will be able, through outside reading, to expand his/her understanding of arithmetic floating-
point operations starting from the understanding of floating-point number representation that is provided 
here. 

 
The kinds of arithmetic operations that Computer Scientists are concerned with are addition, 

subtraction, multiplication, division, and exponentiation.  Arithmetic operations are, in general, 
performed in a different way in digital computers, depending upon the manner in which the underlying 
numbers (operands) are represented in the computer.  In some cases, the differences are relatively 
minute, but in others they are considerable.  In particular, digital arithmetic operations come in two 
principal varieties:  integer operations and floating-point operations.  Integer operations are performed 
on integer numbers, or on numbers stored in a variant of integer number representation known as fixed-
point representation.  Floating-point operations are performed upon numbers stored in the computer in 
floating-point representation.  Floating-point operations are considerably different from integer 
operations, and are more of a challenge to the student.  This tutorial covers both integer and floating-
point number representations, but only integer arithmetic operations. 

 
In this tutorial, we shall start out by surveying some of the mathematical concepts of numbers, 

and shall then proceed to deal with various alternatives for the representation of numbers both in human 
societies and in digital computers.  Next, we shall focus in on the representation of integer numbers in 
digital computers, including a survey of the principal forms of integer digital number representation.  In 
this survey, we shall cover some of the finer points and details and variants of basic integer 
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representation.  We shall also consider the performance of arithmetic operations in digital computers 
upon numbers represented as integers (binary arithmetic).  Finally, as was already mentioned, for 
floating-point numbers we shall cover only their representation and not the performance of arithmetic 
operations upon them.. 

 
 



Representation of Numbers and Performance of Arithmetic in Digital Computers 
 
 

 
 

Page 4  
15 Aug 1999revised 10 May 2002 

© 2002 Charles Abzug 

Learning Objectives: 
 
By the end of this tutorial, the student should be able to: 
 

1. understand the mathematical concepts of Integer Number and Rational Number; 
 

2. be thoroughly familiar with the concept of the positional representation of numbers; 
 
3. convert a rational number of arbitrary specified base or radix to its decimal equivalent; 
 
4. convert any decimal number to a number of equivalent value in any radix other than ten; 
 
5. freely inter-convert binary, octal, and hexadecimal numbers; 
 
6. accurately interpret and determine the value of a string of bits as a Non-Explicitly Signed 

(“Unsigned”) Digital Number, as a Signed-Magnitude Number, as a Ones’-Complement 
Number, as a Two’s-Complement Number, and as an Excess-N Number; 

 
7. accurately predict the results of simple digital arithmetic operations (addition and subtraction) 

carried out in the Arithmetic-Logic Unit (ALU) of a digital computer in accordance with the 
rules of Non-Explicitly Signed-Number (“Unsigned-Number”)  Arithmetic, of Signed-Magnitude 
Arithmetic, of Ones’-Complement Arithmetic, of Two’s-Complement Arithmetic, and of 
Saturation Arithmetic; and 

 
8. convert between a specified value of a Rational Number and its representation in a digital computer 

as a Floating-Point number, given a definition of the particular Floating-Point representation 
scheme in use in the computer where the number is to be represented. 
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Mathematical Concepts of Numbers 
 
In mathematics, there are four principal types of numbers.  The first two of these are Integer 

Numbers and Rational Numbers.  Both are very important for the Computer Scientist to understand, and 
therefore we shall cover these two kinds of numbers in relative depth.  Two other kinds of numbers, 
Real Numbers and Complex Numbers, although very important from the mathematical standpoint, 
nevertheless do not represent a special challenge for the Computer Scientist, and therefore we shall 
briefly define these two kinds of numbers but shall not dwell on them. 

 
 

Integer Numbers 
 
Integer numbers are sometimes referred to as whole numbers.  These are the counting numbers, 

such as: 
 

1  2  3  4  5  etc. 
 

A relatively modern innovation (from about 1400 years ago in India) is the concept of zero, and a still 
more radical and much more recent innovation (late 18th to early 19th century) is the concept of negative 
numbers.  A sampling of integer numbers as we know them today might therefore include a substantial 
range of negative as well as positive integers, as well as zero, such as, for example: 
 

-3,294,852,317  -79  -2  0  +3 
 +24  +87,346,129 

 
The performance of arithmetic operations upon integer decimal numbers is well understood by most 
laymen as well as Computer Science students and need not be reviewed here. 
 
 

Rational Numbers 
 

A Rational Number is one whose value can be expressed with absolute precision as the ratio of 
two integer numbers.  Most fractional numbers that we encounter in the course of daily life are Rational 
Numbers.  These include prices for supermarket items in dollars and cents.  For example, if a can of 
salmon is priced at $4.99, then the price is really: 

 
499 cents/100 cents per dollar  =  $4.99 

 
The description of the number as being equivalent to the ratio of 499/100 emphasizes the rational 
aspect of the number.  Other examples of Rational Numbers are: 
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7,924/3,197  3,429/12  1/789,436 
 
Rational Numbers are very frequently encountered in modern life, typically as decimally expressed 
fractions, such as currency and individual weights of supermarket items.  Because of the ubiquity of 
rational numbers, being able to represent them is a very important design consideration for digital 
computers.  Note that all integers are also rational numbers, for which the denominator is equal to one.  
Obviously, there are many more rational numbers than integers. 
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Real Numbers 
 

The concept of Real Numbers includes many numbers that are not rational, that 
is, they can not be represented precisely as a ratio of two integers.  One example of an 
irrational real number is the fundamental mathematical constant π (pi), the ratio of 
circumference to diameter of a circle.  The value of this number is typically quoted as 
being 3.14159, although in fact 3.14159 is actually a rational number and is only an 
approximation of the true value of π.  For engineering or architectural or scientific 
purposes, the true value of π can be calculated to any desired degree of precision, with 
the specific requirement for precision being dependent upon the specific need for which π 
is to be used.  Mathematically, however, no rational number, even though it may have 
millions of decimal places, can ever express the value of π with absolute precision.  
Another example of a real but irrational number is Euler’s constant, e, which is the basis 
for the so-called “natural” logarithms as well as a constant of widespread use in 
mathematics, physics, and engineering.  Other irrational numbers are the square root of 2 
and the square root of 3.  Irrational real numbers are generally represented in digital 
computers by approximation as rational numbers.  The rational numbers constitute a 
proper subset of the real numbers;  that is, every rational number is also a real number, 
although not all real numbers are also rational. 
 
 

Complex Numbers 
 

Complex Numbers are defined as having the form   a + bi   where  a  and  b  are 
both real numbers and  i  =  √(-1), or the square root of negative one.  The representation 
of complex numbers in a digital computer is not a special problem.  They are handled by 
means of separate representation of the two real coefficients  a  and  b.  Arithmetic 
operations upon them are accomplished in accordance with the well-known mathematical 
rules governing such numbers.   
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Positional Number Notation 
 

Numbers today are almost universally written in a form of notation known as positional number 
representation.  The concept is conveyed most easily through illustration.  Consider the number 
603,550a. This integer number contains two zeroes and two fives.  The two zeroes are not equivalent 
to each other, and the two fives are also not equivalent to each other.  The leftmost zero indicates that 
the number contains no ten-thousands, while the rightmost zero indicates the absence of units.  
Likewise, the left-hand five indicates a value of five hundreds, while the right-hand five indicates a 
value of five tens, or fifty.  We can generalize by stating that not only the value but also the position of 
each numeral in the number determines its significance.  In modern society, integers are almost 
universally written in a specific form of positional notation known as decimal.  The word decimal is a 
derivative of decem, which is the Latin word for ten.  The significance of each numeral in the number is 
directly related to how many numerals are between it and the righmost extremity of the number, that is, 
to its position in the number.  Hence, the term positional number representationb.  Taking our example 
number of 603,550, its value is understood to be the sum of: 

0  units 
5  tens 
5  hundreds 
3  thousands 
0  ten-thousands and 
6  hundred-thousands 

 
Decimal numbers are positional numbers that have a base or radix of ten.  This has two consequences:  
first, there is a requirement for exactly ten distinct numerals to be able to represent all possible values 
for each position in the number, and hence to enable us represent all possible integer numbers in decimal 
notation.  The decimal digits are:   

 
0 1 2 3 4 5 6 7 8 9 

 
With these ten numerals, absolutely any integer can be represented in decimal notation.  The second 
consequence of decimal numbers having a radix or base of ten is that the successive numerals starting 
from the rightmost extremity of the integer have place values that are successive powers of ten.  Thus, 
                                                 

a  This number was selected to illustrate the major features of positional number notation, but it is not a randomly-
selected number.  It appears prominently in the Bible.  Would you happen to remember, or if you are not sure then can you 
guess, where in the Bible this number appears and what it represents? 

b  Can you think of a form of integer number notation where the significance of each numeral is not strictly 
dependent upon how many positions the numeral is displaced from the rightmost extremity of the number?  Is the notation 
system known as “Roman numerals” a positional number system? 
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the rightmost numeral has the place value of units (= 100), the second numeral from the right has the 
place value of tens (= 101), the third numeral from the right has the place value of hundreds (= 102), the 
fourth from the right has the place value of thousands (= 103), etc. 
 
 

Generalized Positional Integer Notation 
 

Once the concept of positional number notation is clearly grasped, there is very little limitation 
on the range of possible radices or bases.  In fact, the base can be any integer greater than one.  How we 
can write numbers in any radix can readily be grasped for radices less than ten.  Thus, a radix 2 number 
would certainly be possible, and would consist entirely of 0’s and 1’s.  Note that just as radix ten 
numbers bear the special name of decimal, so too do radix 2 numbers bear the special name of binary.  
Similarly to the radix 2 numbers that are composed of 0’s and 1’s, a radix 3 number would be composed 
entirely of 0’s, 1’s, and 2’s.  A radix 4 number would consist of 0’s, 1’s, 2’s, and 3’s, and likewise, we 
could have radix 5, radix 6, radix 7, radix 8, and radix 9 numbers. 

 
Consider our example number of 603,550 (decimal), if it were expressed as a base 7 number of 

exactly the same value.  In base 7 notation, this number would be written as  5,062,4237c.  The 
equality of value between the decimal and base-7 numbers is typically shown as: 

 
603,550  =  5,062,4237. 

 
The subscript 7 indicates that the number to the right of the equal sign is to be interpreted as radix 7.  
Because of the ubiquity of decimal numbers in our society, decimal numbers are usually written without 
any subscript, and there is a corresponding assumption that a number written without subscript is a 
decimal number.  Therefore, the number to the left of the equal sign is written without a subscript.  
Nevertheless, it is also correct, if perhaps a bit pedantic, to write: 

 
603,55010  =  5,062,4237 

 
and this notation has the advantage of being absolutely unambiguous.  Note that because of the 
convention that numbers written without subscripts are by default decimal, consequently  10111100  

                                                 
c  Is this correct?  You should be able to check it out by working out the place values of each numeral in the base-7 

representation of the number, and multiplying by the numeral representing the value for that position.  Thus, 5,062,423 in 
radix 7 is equal to the sum of: 

3 x 70 

2 x 71 

4 x 72 

2 x 73 

6 x 74 

0 x 75 

5 x 76 

Is this base-7 number equal or not equal to the decimal number 603,550? 
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and  101111002  are two numbers of radically different value, because the first is decimal and the 
second is binary.  In fact, the binary number has a decimal value of only 188d. 
 
 

Positional Integer Notation for Radices Greater than Ten 
 

The problem with numbers having radices higher than ten is that the numerals with which 
everyone is used to in our society extend only through nine, in consequence of the ubiquity of decimal 
numbers over almost all of the last few thousand years.  With the advent of digital computers, within the 
field of Computer Science binary (radix 2), octal (radix 8), and hexadecimal (radix 16) numbers have 
also come into common use.  For hexadecimal numbers, an additional six numerals are needed, to 
represent the values ten, eleven, twelve, thirteen, fourteen, and fifteen, each as a single numeral.  The 
convention is to use the letters A  B  C  D  E  and  F  to serve as the needed numerals.  This 
scheme obviously would also work for each of the radices eleven through fifteen, with  F  serving only 
in radix 16 as the numeral representing a value of 15,  E  serving in both radices 15 and 16 as the 
numeral representing a value of 14,  D  as the numeral representing 13 in radices 14, 15, and 16,  C  
representing 12 in radices 13 through 16,  B  representing 11 in radices 12 through 16, and  A  
representing 10 in radices 11 through 16.  Obviously, this scheme can readily be extended as far as radix 
36, if necessary.  Rarely are radices as large as 36 ever used.  Higher values of radix are even rarer, and 
additional symbols would have to be defined to represent the numerals needed for such radices. 

 
 

How Many Different Numbers Can Be Represented in a Particular Positional 
Notation? 

 
It is important to be able to calculate how many different numbers can be represented using some 

particular defined positional notation.  There are two features of any positional notation that determine 
the answer.  These are:  (1) the value of the radix,  r,   and (2) the number of numerals, n, present in the 
number.  Remember that r must be greater than 1.  A single numeral can represent  r  different numbers, 
because it can have any of r different values.  These are:  0, 1,  .  .  .  [r -1].  For a number represented by 
two numerals, the numeral on the left can have any of r different values, and for each of these the 
numeral on the right can also have any or r different values.  Therefore, the ordered pair of numerals can 
have r2 different sets of values.  If we extend the number of numerals to three, then r3 different values 
are possible.  By extension, for n numerals, rn different numbers can be represented.  If simple integers 
are being represented, then the range of numbers extends from 0 to [rn - 1].   

 
Radix 

 
Numerals 

How many 
numbers can be 

represented? 

 
Range 

r n rn 0  <  (rn - 1) 
10 7 107 = 10,000 000 0  < 9,999,999 

                                                 
d  The fastidious reader will check to ascertain whether this is correct. 
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2 12 212 = 4,096 0  <  4,095 
16 8 168 = 4,294,967,296 0  <  4,294 967,295 
7 9 79 = 40,353,607 0  <  40,353,606 

 
 
 

Radices in Use in Human Societies 
 
While the most common radix in use in human societies is decimal, in consequence of the 

anatomical circumstance that the normal number of fingers is tene, nevertheless there are several other 
radices that have also been use to some extent in certain societies over the ages.  One such system is the 
quinary system (base 5), in use even today by merchants in the state of Maharashtra in western India.  
Another is the duodecimal system (base 12), which was used by the Assyrians, Babylonians, and 
Sumerians, and that is still in use in parts of China.  The vigesimal system (base 20) was used by the 
Ainu people in northern Japan, and also by the Aztecs, Celts, Greenland Eskimos, and Mayans.  And 
finally, there is the sexagesimal system (base 60), which was used by the Babylonians and Sumerians 
and that is the basis for our practice of dividing the hour into sixty minutes and the minute into sixty 
seconds. 

 
For practical reasons, computers make use of the binary number system.  For ease by people in 

notating and understanding the content of binary numbers, as well as for interpreting the results of 
arithmetic operations carried out in binary, it is convenient to make use of either the octal (radix 8) or 
hexadecimal (radix 16) number systems, both of which are readily interconvertible with binary.  The 
particulars of such interconversion will be covered later. 

 
 

                                                 
e  There is an hereditary abnormality in which some people have not five but six fingers on each hand or six toes on 

each foot.  These conditions bear the name of polydactyly (which means “many fingers” in Greek).  If six fingers and six toes 
had been the norm for people instead of five, then we probably would have settled on a base 12 number system.  A base 12 
number system would have been much more useful than base 10, because of the divisibility of 12 by 2, 3, 4, and 6. 
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Conversion of a Number from One Radix to Another 
 
The best way to develop facility in the understanding positional number notation in a variety of 

radices is to be able to convert numbers from any starting radix ra to any destination radix rb.  Such 
conversion usually requires multiple operations of both multiplication and division.  The trick to success 
in performing such conversions comes from arranging that all the multiplications and divisions will be 
done in decimal, since that is the number scheme with which most people know the arithmetic rules very 
well.  We shall first consider the conversion of integers from other radices to decimal, and then from 
decimal to other radices.  Next, we shall consider the conversion of (non-integral) rational numbers from 
other radices to decimal and from decimal to other radices.  Finally, we shall consider the most 
productive strategy for conversion from any starting radix ra to any destination radix rb. 

 
 

Conversion of Integers from Other Radices to Decimal 
 
Conversion of an integer number from any other radix to decimal is a straightforward operation.  

It is accomplished by determining first the place value of every numeral, starting from the rightmost 
position (always the units digit) and then proceeding stepwise leftwards, progressively multiplying the 
place value of the previous position by the radix, until the place values of all the numerals are 
determined.  This must be done once for a particular radix of origin;  thereafter, the place values so 
calculated can be re-used for converting many different numbers from that radix to decimal.  The second 
step, after all the place values have been determined for the starting radix, is to multiply each numeral of 
the particular number being converted by its place value.  This gives the decimal value contributed by 
that particular numeral.  Finally, the sum of the decimal equivalents of all the numerals is calculated, 
thus giving the total decimal equivalent of the original number. 

 
For example, consider the number 2,122,2203.  The place values for radix 3 work out to: 

Place Value 
1 30 = 1 
2 31 = 3 
3 32 = 9 
4 33 = 27 
5 34 = 81 
6 35 = 243 
7 36 = 729 
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The value of the number  2,122,2203  in decimal thus works out to: 
Place Numeral Value of the 

Numeral 
1 0 0 x 1 = 0 
2 2 2 x 3 = 6 
3 2 2 x 9 = 18 
4 2 2 x 27 = 54 
5 2 2 x 81 = 162 
6 1 1 x 243 = 243 
7 2 2 x 729 = 1458 

Sum in Decimal: 1,941 
 
Next, consider the number 2,122,2204 (same numerals as the previous number, but a different 
radix).  The place values for radix 4 work out to: 

Place Value 
1 40 = 1 
2 41 = 4 
3 42 = 16 
4 43 = 64 
5 44 = 256 
6 45 = 1,024 
7 46 = 4,096 

 
The value of this number in decimal thus works out to: 

Place Numeral Value of the 
Numeral 

1 0 0 x 1 = 0 
2 2 2 x 4 = 8 
3 2 2 x 16 = 32 
4 2 2 x 64 = 128 
5 2 2 x 256 = 512 
6 1 1 x 1,024 = 1,024 
7 2 2 x 4,096 = 8,192 

Sum in Decimal: 9,896 
 
Overall, please note that the conversion of an integer from an arbitrary starting radix to decimal is a 
straightforward operation that takes place using multiplications and additions in accordance with the 
rules of decimal arithmetic. 
 
 

Conversion of Integers from Decimal to Other Radices: 
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To convert an integer number from decimal to some other radix, there is an algorithm that is 
simple to execute.  Simply divide the number over and over by the destination radix.  Each successive 
division will produce a result expressed as a quotient and a remainder.  The remainder obtained from the 
first division becomes the units-place numeral for the number in the new radix.  Take the quotient from 
the first division, and divide it once more by the new radix.  The remainder from the second division 
becomes the second-place numeral in the new radix, and the quotient  is divided once more by the value 
of the new radix.  This process continues until the quotient of a division becomes zero.  Any remainder 
still left over at this point becomes the leftmost numeral of the number written in the new radix. 

 
Consider the number  194110  converted to radix 7.  The sequence of operations is: 
 

Step # Operation Result 
1 1941/7 Quotient = 277;  Remainder = 2 
2 277/7 Quotient = 39;  Remainder = 4 
3 39/7 Quotient = 5;  Remainder = 4 
4 5/7 Quotient = 0;  Remainder = 5 
5 Stop here:  no quotient remaining  

Value of Number in Base 7: 5,4427  =  194110 
 
Check if this answer is correct by converting 5,4427 back to decimal, using the method shown earlier. 
 
 

Interconversion of Integers between Any Pair of Radices: 
 

It is important to be able to convert a number from any arbitrary radix to any other radix.  This is 
generally difficult to do, since the arithmetic has to be carried out in the starting radix, and the rules for 
division in the general case of radix r are different from the rules of decimal arithmetic that we are used 
to from daily living.  The easiest way to accomplish this goal, therefore, is to convert first to decimal and 
then to the target radix.  Conversion to decimal is straightforward, as was shown above, and requires 
exclusively operations that are performed in decimal.  Likewise, conversion from decimal to any other 
radix can take place using decimal arithmetic (successive division by the target radix), and are therefore 
also easy to carry out.  Therefore, in general to convert from radix r1 to radix r2, just convert first from 
radix r1 to decimal, and then from decimal to radix r2. 
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Conversion of Fractional Numbers from Other Radices to Decimal 
 
In general, conversion of a fractional number from some other radix to decimal is just a 

straightforward extension of the conversion algorithm for integers.  That is, first the decimal place 
values for the different numeral positions for the source radix are calculated, which once done can serve 
for the conversion of as many numbers as needed from the same source radix to decimal.  This 
calculation is accomplished starting from the radix point (which for decimal numbers is called the 
decimal point) and proceeding outwards.  Then the separate contribution to the number of each numeral 
extending rightwards from the radix point must be determined by multiplying the place value expressed 
in decimal by that numeral.  Finally, the sum of the contributions of all numerals of the original number 
must be taken.   

 
For example, consider the conversion to decimal of the source number  0.21222203. The 

place values counting rightwards from the radix point work out for radix 3 to: 
Place Value 

-1 3-1 = 0.333333333+ 
-2 3-2 = 0.111111111+ 
-3 3-3 = 0.037037037+ 
-4 3-4 = 0.012345679+ 
-5 3-5 = 0.004115226+ 
-6 3-6 = 0.001371742+ 
-7 3-7 = 0.000457237+ 

 
The value of the number  0.2,122,2203  in decimal thus works out to: 

Place Numeral Value of the 
Numeral 

-1 2 2 x 0.333333333+ = 0.666666666+ 
-2 1 1 x 0.111111111+ = 0.111111111+ 
-3 2 2 x 0.037037037+ = 0.074074074+ 
-4 2 2 x 0.012345679+ = 0.024691358+ 
-5 2 2 x 0.004115226+ = 0.008230452+ 
-6 2 2 x 0.001371742+ = 0.002743484+ 
-7 0 0 x 0.000457237+ = 0.000000000 

Sum in Decimal: 0.887517145+ 
The ‘+’ signs indicate that there are more digits, but that the 
calculated number is purposely being truncated at an arbitrarily 
chosen level of precision. 

 
Please note that for the general case of a rational number, which will be expressed in the form of 
numerals on both sides of the radix point, it is necessary to calculate the place values of the various 
numerals going in both directions from the radix point.  Several worked examples are given in the 
“Review Questions on Digital Number Representation”. 
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Conversion of Fractional Numbers from Decimal to Other Radices 
 
To convert a fractional decimal number to another radix, instead of performing division it is 

necessary instead to multiply the fractional number successively by the radix.  Each multiplication, in 
general, results in a product that has both an integer part and a fractional part.  The integer part resulting 
from the first multiplication becomes the first numeral to the right of the radix point for the number in 
the new radix.  Only the fractional part of the first product is multiplied again by the value of the 
destination radix to give the second product.  Again, the integer portion of this product becomes the next 
numeral to the right of the radix point for the number represented in the new radix.  The fractional part 
of the product is stripped off and multiplied once more by the value of the destination radix to give the 
next product.  This process continues until the desired level of precision is reached.  For example, to 
convert the number  0.88751714510  to base 3, the successive multiplications yield: 

 
Multiplicand Multiplier Product Fractional Part Integer 

Part 
0.887517145 3 2.662551435 .662551435 2 
0.662551435 3 1.987654305 .987654305 1 
0.987654305 3 2.962962915 .962962915 2 
0.962962915 3 2.888888745 .888888745 2 
0.888888745 3 2.666666235 .666666235 2 
0.666666235 3 1.999998705 .999998705 1 
0.999998705 3 2.999996115 .999996115 2 
0.999996115 3 2.999988345 .999988345 2 
0.999988345 3 2.999965035 .999965035 2 

Radix 3 Number:  0.2122212223 
 
Notice that we had started out up above with the number  0.21222203.  which we first converted up 
above to the decimal number  0.88751714510  and then just now converted back to radix 3.  Can you 
come up with an explanation of why we ended up with a number that is slightly different from that with 
which we had started out?  
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Interconversion of Fractional Numbers between Any Pair of Radices: 
 

It is important for fractional numbers, too, to be able to convert a number from any arbitrary 
source radix to any other destination radix.  As for the integers, so, too for the fractions this is generally 
difficult to do, since the arithmetic has to be carried out in the starting radix, and the rules for both 
multiplication and addition in the general case of radix r are different from the rules for multiplication 
and addition in the decimal arithmetic that we are used to from daily living.  The easiest way to 
accomplish our goal, therefore, is to convert first to decimal and then to the target radix.  Conversion to 
decimal is straightforward, as was shown above, and requires exclusively operations that are performed 
in decimal.  Likewise, conversion from decimal to any other radix can take place using decimal 
arithmetic (successive multiplication by the target radix), and are therefore also easy to carry out.  
Therefore, in general to convert from radix r1 to radix r2, just convert first from radix r1 to decimal, and 
then from decimal to radix r2. 

 
 

Interconversion of Mixed Numbers between Any Pair of Radices 
 
It is necessary to be able to convert the general case of rational numbers from any starting radix 

to any destination radix.  To accomplish this, simply divide the number at the radix point into its two 
principal components:  the integer part and the fractional part.  Follow the procedure already shown for 
the conversion of integer numbers on the integer portion of the number, and the procedure for the 
conversion of fractional numbers on the fractional portion of the number, and then reassemble the 
number in the destination radix from its two components.  For several worked examples, please see the 
“Review Questions on Digital Number Representation”. 
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Binary Numbers 
 
In digital computers, numbers are universally represented in some variant of binary form, that is, 

as a sequence of 0’s and 1’s.  Each 0 or 1 is referred to as a binary digit or bit.  For a scheme in which n 
bits are used to represent each number, each bit can have a value of either 0 or 1, and therefore a total of 
2n different numbers can be represented.  There are several different forms of binary number 
representation.  The various forms differ from each other in two ways:  in the range of numbers 
represented, and in the scheme by which a given bit sequence is mapped to a specific number within the 
range.  There is a very special aspect of representation of number within a digital computer that needs to 
be borne in mind.  When we are representing numbers with paper-and-pencil notation, if we run out of 
range within a given number of numeral positions, it is usually a fairly trivial matter to add as many 
numerals as may be required for the size of the number that we must represent.  In digital computers, 
however, we must normally face the circumstance that we are limited by the computer hardware in 
terms of the number of bits that we can allocate to the representation of a number.  If the number that we 
must represent is out of range, then we might have to do some fancy footwork in software to provide the 
functional equivalent of use of a larger number of hardware bits than are available. 

 
We shall mainly consider various binary schemes for the representation of integers.  The most 

important of these are Non-Explicitly-Signed (“Unsigned”) Representation, Signed-Magnitude 
Representation, Ones’-Complement Representation, Two’s-Complement Representation, and Excess-N 
Representation.  Of these, the simplest to comprehend is Unsigned Number representation, and that is 
where we shall begin. 

 
 

Unsigned Number Representation 
 
In the Unsigned Number form of binary number representation, all numbers are treated as non-

negative integers (that is, the numbers represented are all either positive integers or zero).  This is 
equivalent to the general scheme for representation of integer numbers described above, and is the 
absolutely simplest scheme of binary number representation.   

 
For an unsigned number composed of  n  bits, a total of 2n different numbers can be represented, 

and the range of numbers represented in this way extends from 0 up to a maximum value of  [2n -1].  
Sometimes, it is necessary to look at this issue from the opposite perspective:  If we know that we must 
represent some range of numbers from  0  up to  N,  then how many bits,  n,  are required to represent 
them?  The answer is  n  =  (log2N),  where the pair of symbols     denotes the ceiling function.  This 
is the smallest integer less than or equal to the value of the term enclosed by the two symbols. Thus, for 
example, if we are required to represent 487 different numbers, (log2487)  =  9, and therefore nine bits 
are required.  The reason for this is that eight bits would be too few, being able to represent only 256 
different numbers.  While nine bits can represent as many as 512 different numbers, which is more than 
the 487 necessary, nevertheless since we can only have an integral number of bits, the smallest integer 
greater than eight is necessary, and this comes out, of course, to nine. 
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In all of the binary integer representation schemes other than unsigned numbers, not only 

positive but also negative numbers are represented.  These schemes all differ from each other in terms of 
how are the negative numbers represented as well as in the exact range numbers represented. 

 
 

Signed-Magnitude Representation 
 
In Signed-Magnitude representation, the leftmost bit is reserved as a sign bit, and the remaining 

bits signify the magnitude of the number.  For the sign bit, a 0 represents positive sign and a 1 represents 
negative sign.  Consider as an example the following two numbers: 

 
a = 010110112 

 
b = 110110112 

 
The seven bits on the right side of both numbers, i.e., the magnitude bits, are identical.  Only the 
leftmost bit (the zero bit) is different.  Examining the magnitude bits of either number, the units bit and 
the 2’s bit are both 1, the 4’s bit is a 0, the 8’s bit and the 16’s bit are both 1, the 32’s bit is a 0, and the 
64’s bit is a 1.  Hence the magnitude of both numbers is:  1 + 2 + 8 + 16 + 64 = 91.  Because of the 
difference in the sign bits, a = +91  and  b = -91.   

 
Overall, in Signed-Magnitude representation, those numbers ranging from zero to [2n -1 -1] are 

represented identically to the way they are represented in Unsigned-Number representation.  The 
remaining bit sequences, which in Unsigned-Number representation are used for numbers whose values 
range from 2n - 1 to 2n, are co-opted and are used instead to represent negative numbers.  Note that each 
non-negative number represented has a corresponding negative number whose representation is identical 
in all bit positions except the sign bit.  This means that Signed-Magnitude has two representations for 
zero.  In 8-bit Signed-Magnitude these are  00000000 and 10000000.  These are referred to as 
“positive zero” and “negative zero” respectively. 

 
 

Ones’-Complement Representation 
 
In Ones’-Complement representation, to represent the negative of a number one subtracts the 

positive value of the number from a special number consisting of all 1’s.  Hence, the term Ones’-
Complement (with the apostrophe after the s in “Ones”).  Let us examine how the negative of 91 is 
represented in Ones’-Complement: 

 
All 1’s (binary representation of 2n - 1 = 25510): 11111111 

Binary representation of +9110: 01011011 
Ones’-Complement representation of -9110: 10100100 
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Notice that in subtracting the binary representation of +9110 from the number consisting of all 1’s (which 
for eight bits represents 25510 in Unsigned-Number representation), in every bit position where the 
representation of +9110 has a 0, the representation of -9110 has a 1.  Likewise, in every bit position where 
the representation of +9110 has a 1, the representation of -9110 has a 0.  Thus, the Ones’-Complement 
representation of a negative number consists of the bit-wise inversion (hence the term “Complement”) of 
the representation of the positive number of equivalent magnitude.  This scheme is radically different 
from the Signed-Magnitude representation, in which all bits except for the sign bit are identical between 
the representation of any pair of positive and negative numbers whose magnitudes are equal.   
 

So far, we have described how to obtain the Ones’-Complement representation of a given 
number.  Now, let us consider the opposite problem:  Given a binary representation of a number that we 
know to be in Ones’-Complement form, how do we determine the value of the number represented?  The 
procedure is first to examine the sign bit.  If this is a 0 (signifying that a positive number is represented), 
then merely compute the magnitude of the positive number in the usual way by adding up the place 
values of all bit positions having 1’s.  If the sign bit is a 1, that indicates that a negative number is 
represented.  In that case, take the Ones’-Complement of the negative number to obtain the 
representation of its magnitude, and then determine the magnitude of this number as before.  There are 
several worked examples of conversion between decimal and Ones’-Complement representation in 
“Review Questions on Digital Number Representation”. 

 
Overall, in Ones’-Complement representation, those numbers ranging from zero to [2n -1 -1] are 

represented identically to the way they are represented in Unsigned-Number and in signed-Magnitude 
representations.  Numbers whose magnitudes lie between 2n -1 and 2n - 1 are not represented at all.  The 
bit sequences that are used in Unsigned-Number representation for these numbers are co-opted in Ones’-
Complement, and are used instead to represent negative numbers.  Ones’-Complement, as well as 
Signed-Magnitude, has two representations of zero, a positive zero and a negative zero.  The positive 
zeroes are identically represented in both schemes by a bit string consisting of zeroes in all bit positions.  
However, the negative zero representation differs between the two systems.  In Signed-Magnitude it 
consists of  10000000, but in Ones’-Complement it consists of  11111111f. 

 
 

                                                 
f  Check for yourself, based upon the principles for representation of negative numbers in Ones’-Complement that 

have been explained, to see why this is so. 
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Two’s-Complement Representation 
 
In Two’s-Complement representation, the set of bit sequences that in Unsigned-Number 

representation is utilized to represent numbers in the range of 2n -1 up to [2n - 1] is assigned to negative 
numbers in a closely-related but slightly different way from how this is accomplished in Ones’-
Complement.  In Two’s-Complement this is accomplished by subtracting the positive number 
representing the magnitude of the number, whose negative representation is desired, from 2n rather than 
from [2n -1].  To accomplish this feat conceptually, it is necessary to add an extra bit to the subtrahend 
(the number from which is to be subtracted the magnitude of the number whose negative representation 
is desired).  This is best understood from an example such as the following for 8-bit numbers:  

 
Binary representation of 2n  = 25610 (requires a 9th bit): 100000000 

Binary representation of +9110:  01011011 
Two’s-Complement representation of -9110:  10100101 

 
Note that the Two’s-Complement representation of a positive number is almost but not quite identical to 
the Ones’-Complement representation of the same number.  In fact, carrying out the subtraction as 
shown in the illustration is cumbersome and difficult to implement in digital computers.  Therefore, in 
practice the process of “doing” Two’s-Complementation in a digital computer is carried out in two steps:  
first “complementing”  (that is, taking the Ones’-Complement of) the number and then incrementing the 
Ones’-Complement. 

 
Overall, in Two’s-Complement representation, those numbers ranging from zero to [2n -1 -1] are 

represented identically to the way they are represented in Unsigned-Number and in signed-Magnitude 
representations.  Numbers whose magnitudes lie between 2n -1 and 2n - 1, as in the other two schemes 
discussed so far that accommodate the representation of negative numbers, are not represented at all.  
The bit sequences that are used in Unsigned-Number representation for these numbers are also co-opted 
in Twos’-Complement, and are used instead to represent negative numbers.  Two’s-Complement, in 
contrast both to Signed-Magnitude and to Ones’-Complement, has only one representation of zerowhich 
is equal to the positive zero of the other two schemes.  The bit string consisting of all 1’s, which in 
Ones’-Complement represents negative zero, in Two’s-Complement represents the number [−2n-1], which 
is not represented either in Signed-Magnitude or in Ones’-Complement..  Thus, in 8-bit Two’s-
Complement the bit string 11111111 represents -12810.  Note that +128 has no representation at all in 
8-bit Two’s-Complementg. 

 
Please try hour hand at interconverting between decimal notation of a number and binary 

representation in Two’s-Complement form.  There are several worked problems appearing in “Review 
Questions on Digital Number Representation”. 

 
 

                                                 
g  Can you explain why Two’s-Complement representation has this asymmetry in representation of positive and 

negative numbers, while both Signed-Magnitude and Ones’-Complement are completely symmetrical?  
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Excess-N Representation 
 
The final scheme of binary number representation that will be covered here is called Excess-N 

representation.  This scheme is important in Computer Science because it is often used for the 
representation of exponents within Floating-Point numbers.  In an Excess-N representation, a decimal 
number is represented in binary notation.  It is necessary to specify a value for N, but this is usually 
equal to 2n - 1 for representation in an n-bit field.  The value of N must be added to the decimal value of 
the number to be represented, and then the Unsigned-Number representation of the sum is what is stored.  
This is much easier to understand from illustration than from explanation.  Consider an 8-bit field used 
to store numbers in Excess-128 notation.  To represent the number -9110: 

Number to be represented: -9110 
Add the value of N : -91 + 128 = +37 
Unsigned-Magnitude 8-bit representation of [Number + N]: 00100101 
 
To convert in the opposite direction, first calculate the Unsigned-Magnitude value of the bit 

string representing the number, and then subtract the value of N.  The result is the value of the number 
represented. 

 
Overall, in Excess-N representation, assuming that the value of N is 2n - 1,  those numbers are 

represented that range from −2n -1 to [+2n - 1 − 1], which is the same range as for Two’s-Complement.  
However, not one of the numbers in the entire range is represented identically to the way it is 
represented in any of the other binary notations that are covered in this tutorial.  Numbers whose 
magnitudes lie between 2n -1 and 2n - 1, as in the other three schemes discussed so far that accommodate 
the representation of negative numbers, are also in Excess-N not represented at all. 

 
 

Summary of Binary Number Representation 
 

Several schemes have been discussed for the representation of integers in binary notation.  The 
following table summarizes these schemes.  In the leftmost column, “Hexadecimal Value of Number”, 
the actual value (not the representation) of the number is shown in hexadecimal.  Hexadecimal numbers 
have not yet been explained.  The reader is advised to ignore this column for now, but to return to this 
table and re-examine the leftmost column after hexadecimal numbers have been covered. 
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Binary Representations Hexadecimal 
Value of 
Number 

Decimal 
Value of 
Number Unsigned

Number 
Signed- 

Magnitude 
Ones’- 

Complement 
Two’s- 

Complement Excess-8 

-8H -8 N/R N/R N/R 1000 0000 
-7H -7 N/R 1111 1000 1001 0001 
-6H -6 N/R 1110 1001 1010 0010 
-5H -5 N/R 1101 1010 1011 0011 
-4H -4 N/R 1100 1011 1100 0100 
-3H -3 N/R 1011 1100 1101 0101 
-2H -2 N/R 1010 1101 1110 0110 
-1H -1 N/R 1001 1110 1111 0111 
-0H -0 N/R 1000 1111 N/R N/R 
+0H 0 0000 0000 0000 0000 1000 
+1H 1 0001 0001 0001 0001 1001 
+2H 2 0010 0010 0010 0010 1010 
+3H 3 0011 0011 0011 0011 1011 
+4H 4 0100 0100 0100 0100 1100 
+5H 5 0101 0101 0101 0101 1101 
+6H 6 0110 0110 0110 0110 1110 
+7H 7 0111 0111 0111 0111 1111 
+8H 8 1000 N/R N/R N/R N/R 
+9H 9 1001 N/R N/R N/R N/R 
+AH 10 1010 N/R N/R N/R N/R 
+BH 11 1011 N/R N/R N/R N/R 
+CH 12 1100 N/R N/R N/R N/R 
+DH 13 1101 N/R N/R N/R N/R 
+EH 14 1110 N/R N/R N/R N/R 
+FH 15 1111 N/R N/R N/R N/R 

N/R means that the specified number is Not Represented in the particular representation scheme 
applicable to the current column. 

 
Points to Ponder: 

1. What is the number of substantive entries in each column of the table? 
2. Do different columns have different numbers of entries, or are they all equal? 
3. What determines the maximum possible number of substantive entries in a column? 
4. Of the various number representation schemes shown, which is the best to use for the 

representation of integers?  Explain/justify your answer. 
5. Describe the relationship between the contents of the adjacent columns of binary numbers for:  

(a) the natural numbers; and  (b) the non-positive numbers. 
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Please examine this table very carefully to be certain that you understand the various forms of number 
representation.  Note that the principles that govern the various schemes of number representation apply 
equally to bit strings of width two or greater without upper limit.  In ancient times (for Computer 
Science, “ancient times” means ten or more years ago), computers were manufactured by different 
companies with a great variety of “word sizes”, that is, of the lengths of bit strings used to represent 
numbers inside the machine.  Today the word size is universally some multiple of eight bits:  either 8 or 
16 or 32 or 64 or 128.  The Computer Scientist needs to be thoroughly familiar with the place values for 
the bits of binary numbers represented in Unsigned-Number notation, as follows: 
 

Bit 
Position 

# 

Power 
of 
2 

 
Place Value 

 

 
Nominal 

Value 

 
Approximate 

Value 
0 20 1 
1 21 2 
2 22 4 
3 23 8 
4 24 16 
5 25 32 
6 26 64 
7 27 128 
8 28 256 
9 29 512 

  

10 210 1,024 1 k 1 thousand 
11 211 2,048 2 k 2 thousand 
12 212 4,096 4 k 4 thousand 
13 213 8,192 8 k 8 thousand 

 
20 220 1,048,576 1 M (Meg) 1 million 
24 224 16,777,216 16 M (Meg) 16 million 

 
30 230 1,073,741,824 1 G (Gig) 1 billion 
32 232 4,294,967,296 4 G (Gig) 4 billion 
36 236 68,719,476,736 64 G (Gig) 64 billion 

 
40 240 1,099,511,627,776 1 T (Tera) 1 trillion 

 
50 250 1,125,899,906,842,624 1 P (Peta) 1 quadrillion 

To compute the place value of any bit position, remember the basic exponential identity: 
 

X(y + z}  ≡  Xy  ×  Xz 
 
For binary numbers, the identity becomes: 
 

2(y + z}  ≡  2y  ×  2z 
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What this means is that if we want to determine the place value of, for example, bit 47 (the 48th bit 
position), that works out to: 
 

248  =  28  ×  240  =  256 Tera. 
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