

15 Aug 1999; rev 13 Sep 1999

Tutorial:
Representation of Numbers
in Digital Computers, and
Digital Integer Arithmetic

© 1999 Charles Abzug

Outline

1. Representation of Numbers in Digital Computers

a. Integer Number Representation

b. Floating-Point Number Representation

c. Variant on Integer Numbers: Fixed-Point Number Representation

2.

3.

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page i
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

Table of Contents

Tutorial: Representation of Numbers in Digital Computers, and Digital Integer Arithmetic ... 0

Outline .. 0

Introduction.. 1

Learning Objectives: .. 3

Mathematical Concepts of Numbers ... 4
Integer Numbers ...4

Rational Numbers ...4

Real Numbers ..6

Complex Numbers...6

Positional Number Notation.. 7
Generalized Positional Integer Notation...8

Positional Integer Notation for Radices Greater than Ten ...9

How Many Different Numbers Can Be Represented in a Particular Positional Notation?9

Radices in Use in Human Societies ..10

Conversion of a Number from One Radix to Another ... 11
Conversion of Integers from Other Radices to Decimal..11

Conversion of Integers from Decimal to Other Radices: ..13

Interconversion of Integers between Any Pair of Radices: ...13

Conversion of Fractional Numbers from Other Radices to Decimal ...14

Conversion of Fractional Numbers from Decimal to Other Radices ...15

Interconversion of Fractional Numbers between Any Pair of Radices:...16

Interconversion of Mixed Numbers between Any Pair of Radices...16

Binary Numbers ... 17
Unsigned Number Representation...17

Signed-Magnitude Representation ..18

Ones’-Complement Representation ..18

Two’s-Complement Representation ..20

Excess-N Representation ..21

Summary of Binary Number Representation...21

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page ii
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

Binary Representations.. 22
Display and Description of the Contents of Memory Locations and Registers: Octal and

Hexadecimal Notation..24

Binary Arithmetic... 24
Floating Point Number Representation ..24

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 1
15 Aug 1999; rev 13 Sep 1999

Introduction

A major portion of the operations that take place in a digital computer consists of calculations

that are carried out upon numeric data. These operations constitute digital arithmetic. The digital
arithmetic operations must be augmented by a variety of support operations that are necessary to enable
the calculations to occur. The vast majority of these calculations consist of simple arithmetic, and are
conceptually very easy for even the layman to understand; they do not constitute a challenge to the
Computer Scientist. However, despite the fact that the digital arithmetic operations are conceptually
simple, the detailed understanding of how these operations are carried out internally in the machine is
something of a challenge for the beginning student of Computer Science. Once mastered, however, this
subject brings to the Computer Scientist substantial insight into how digital computers work as well as
into some of the programming techniques that must be employed to assure that the calculations
performed by the computer yield answers of the requisite degree of accuracy. Therefore, this subject is
important to study.

The overall subject matter can be broken down into two principal topics. First, it is necessary to

understand the various principal ways in which numbers are represented in the digital computer. The
student should be able to demonstrate this understanding by relating the internal representation of a
number to the actual value of the number in each case. In addition, for each form of number
representation, there are one or sometimes more ways in which it is possible for arithmetic operations to
be carried out. The next challenge for the Computer Scientist is therefore to understand how each kind
of arithmetic operation is carried out for each of the schemes of number representation. He/she must
also understand what answer will be produced by the computer logic circuits in each case, as well as the
potential for error occurring in the results. Finally, the Computer Scientist must also be able through a
combination of hardware and software to detect and handle initially erroneous results, and to take
appropriate action to assure that the final results attained under defined circumstances will be correct.

This tutorial covers in detail only part of the subjects of number representation and digital

arithmetic. It is intended to convey a thorough understanding of both subjects at least for integer
numbers and for the closely related fixed-point numbers. Floating-point numbers, however, are covered
only insofar as their representation in the computer is concerned. This will provide the basis from which
the student will be able, through outside reading, to expand his/her understanding of arithmetic floating-
point operations starting from the understanding of floating-point number representation that is provided
here.

The kinds of arithmetic operations that Computer Scientists are concerned with are addition,

subtraction, multiplication, division, and exponentiation. Arithmetic operations are, in general,
performed in a different way in digital computers, depending upon the manner in which the underlying
numbers (operands) are represented in the computer. In some cases, the differences are relatively

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 2
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

minute, but in others they are considerable. In particular, digital arithmetic operations come in two
principal varieties: integer operations and floating-point operations. Integer operations are performed
on integer numbers, or on numbers stored in a variant of integer number representation known as fixed-
point representation. Floating-point operations are performed upon numbers stored in the computer in
floating-point representation. Floating-point operations are considerably different from integer
operations, and are more of a challenge to the student. This tutorial covers both integer and floating-
point number representations, but only integer arithmetic operations.

In this tutorial, we shall start out by surveying some of the mathematical concepts of numbers,

and shall then proceed to deal with various alternatives for the representation of numbers both in human
societies and in digital computers. Next, we shall focus in on the representation of integer numbers in
digital computers, including a survey of the principal forms of integer digital number representation. In
this survey, we shall cover some of the finer points and details and variants of basic integer
representation. We shall also consider the performance of arithmetic operations in digital computers
upon numbers represented as integers (binary arithmetic). Finally, as was already mentioned, for
floating-point numbers we shall cover only their representation and not the performance of arithmetic
operations upon them..

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 3
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

Learning Objectives:

By the end of this tutorial, the student should be able to:

1. understand the mathematical concepts of Integer Number and Rational Number;

2. be thoroughly familiar with the concept of the positional representation of numbers;

3. convert a number of arbitrary specified base or radix to its decimal equivalent;

4. convert any decimal number to a number of equivalent value in any radix other than ten;

5. freely inter-convert binary, octal, and hexadecimal numbers;

6. accurately interpret and determine the value of a string of bits as an Unsigned Digital Number, as a

Signed-Magnitude Number, as a Ones’-Complement Number, as a Two’s-Complement Number,
and as an Excess-N Number;

7. accurately predict the results of simple digital arithmetic operations (addition and subtraction)

carried out in the Arithmetic-Logic Unit (ALU) of a digital computer in accordance with the
rules of Unsigned Number Arithmetic, of Signed-Magnitude Arithmetic, of Ones’-Complement
Arithmetic, of Two’s-Complement Arithmetic, and of Saturation Arithmetic; and

8. convert between a specified value of a rational number and its representation in a digital computer as

a Floating-Point number, given a definition of the particular Floating-Point representation
scheme in use in the computer where the number is to be represented.

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 4
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

Mathematical Concepts of Numbers

In mathematics, there are four principal types of numbers. The first two of these are Integer

Numbers and Rational Numbers. Both are very important for the Computer Scientist to understand, and
therefore we shall cover these two kinds of numbers in relative depth. Two other kinds of numbers,
Real Numbers and Complex Numbers, although very important from the mathematical standpoint,
nevertheless do not represent a special challenge for the Computer Scientist, and therefore we shall
briefly define these two kinds of numbers but shall not dwell on them.

Integer Numbers

Integer numbers are sometimes referred to as whole numbers. These are the counting numbers,

such as:

1 2 3 4 5 etc.

A relatively modern innovation (from about 1400 years ago in India) is the concept of zero, and a still
more radical and much more recent innovation (late 18th to early 19th century) is the concept of negative
numbers. A sampling of integer numbers as we know them today might therefore include a substantial
range of negative as well as positive integers, as well as zero, such as, for example:

-3,294,852,317 -79 -2 0 +3
 +24 +87,346,129

The performance of arithmetic operations upon integer decimal numbers is well understood by most
laymen as well as Computer Science students and need not be reviewed here.

Rational Numbers

A Rational Number is one whose value can be expressed with absolute precision as the ratio of
two integer numbers. Most fractional numbers that we encounter in the course of daily life are Rational
Numbers. These include prices for supermarket items in dollars and cents. For example, if a can of
salmon is priced at $4.99, then the price is really:

499 cents/100 cents per dollar = $4.99

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 5
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

The description of the number as being equivalent to the ratio of 499/100 emphasizes the rational
aspect of the number. Other examples of Rational Numbers are:

7,924/3,197 3,429/12 1/789,436

Rational Numbers are very frequently encountered in modern life, typically as decimally expressed
fractions, such as currency and individual weights of supermarket items. Because of the ubiquity of
rational numbers, being able to represent them is a very important design consideration for digital
computers. Note that all integers are also rational numbers, for which the denominator is equal to one.
Obviously, there are many more rational numbers than integers.

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on
Digital Integer Arithmetic

Page 6
15 Aug 1999; rev 13 Sep 1999

Real Numbers

The concept of Real Numbers includes many numbers that are not rational, that
is, they can not be represented precisely as a ratio of two integers. One example of an
irrational real number is the fundamental mathematical constant π (pi), the ratio of
circumference to diameter of a circle. The value of this number is typically quoted as
being 3.14159, although in fact 3.14159 is actually a rational number and is only an
approximation of the true value of π. For engineering or architectural or scientific
purposes, the true value of π can be calculated to any desired degree of precision, with
the specific requirement for precision being dependent upon the specific need for which π
is to be used. Mathematically, however, no rational number, even though it may have
millions of decimal places, can ever express the value of π with absolute precision.
Another example of a real but irrational number is Euler’s constant, e, which is the basis
for the so-called “natural” logarithms as well as a constant of widespread use in
mathematics, physics, and engineering. Other irrational numbers are the square root of 2
and the square root of 3. Irrational real numbers are generally represented in digital
computers by approximation as rational numbers. The rational numbers constitute a
proper subset of the real numbers; that is, every rational number is also a real number,
although not all real numbers are also rational.

Complex Numbers

Complex Numbers are defined as having the form a + bi where a and b are
both real numbers and i = √(-1), or the square root of negative one. The representation
of complex numbers in a digital computer is not a special problem. They are handled by
means of separate representation of the two real coefficients a and b. Arithmetic
operations upon them are accomplished in accordance with the well-known mathematical
rules governing such numbers.

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 7
15 Aug 1999; rev 13 Sep 1999

Positional Number Notation

Numbers today are almost universally written in a form of notation known as positional number
representation. The concept is conveyed most easily through illustration. Consider the number
603,550a. This integer number contains two zeroes and two fives. The two zeroes are not equivalent
to each other, and the two fives are also not equivalent to each other. The leftmost zero indicates that
the number contains no ten-thousands, while the rightmost zero indicates the absence of units.
Likewise, the left-hand five indicates a value of five hundreds, while the right-hand five indicates a
value of five tens, or fifty. We can generalize by stating that not only the value but also the position of
each numeral in the number determines its significance. In modern society, integers are almost
universally written in a specific form of positional notation known as decimal. The word decimal is a
derivative of decem, which is the Latin word for ten. The significance of each numeral in the number is
directly related to how many numerals are between it and the righmost extremity of the number, that is,
to its position in the number. Hence, the term positional number representationb. Taking our example
number of 603,550, its value is understood to be the sum of:

0 units
5 tens
5 hundreds
3 thousands
0 ten-thousands and
6 hundred-thousands

Decimal numbers are positional numbers that have a base or radix of ten. This has two consequences:
first, there is a requirement for exactly ten distinct numerals to be able to represent all possible values
for each position in the number, and hence to enable us represent all possible integer numbers in decimal
notation. The decimal digits are:

0 1 2 3 4 5 6 7 8 9

a This number was selected to illustrate the major features of positional number notation, but it is not a randomly-

selected number. It appears prominently in the Bible. Would you happen to remember, or if you are not sure then can you
guess, where in the Bible this number appears and what it represents?

b Can you think of a form of integer number notation where the significance of each numeral is not strictly
dependent upon how many positions the numeral is displaced from the rightmost extremity of the number? Is the notation
system known as “Roman numerals” a positional number system?

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 8
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

With these ten numerals, absolutely any integer can be represented in decimal notation. The second
consequence of decimal numbers having a radix or base of ten is that the successive numerals starting
from the rightmost extremity of the integer have place values that are successive powers of ten. Thus,
the rightmost numeral has the place value of units (= 100), the second numeral from the right has the
place value of tens (= 101), the third numeral from the right has the place value of hundreds (= 102), the
fourth from the right has the place value of thousands (= 103), etc.

Generalized Positional Integer Notation

Once the concept of positional number notation is clearly grasped, there is very little limitation
on the range of possible radices or bases. In fact, the base can be any integer greater than one. How we
can write numbers in any radix can readily be grasped for radices less than ten. Thus, a radix 2 number
would certainly be possible, and would consist entirely of 0’s and 1’s. Note that just as radix ten
numbers bear the special name of decimal, so too do radix 2 numbers bear the special name of binary.
Similarly to the radix 2 numbers that are composed of 0’s and 1’s, a radix 3 number would be composed
entirely of 0’s, 1’s, and 2’s. A radix 4 number would consist of 0’s, 1’s, 2’s, and 3’s, and likewise, we
could have radix 5, radix 6, radix 7, radix 8, and radix 9 numbers.

Consider our example number of 603,550 (decimal), if it were expressed as a base 7 number of

exactly the same value. In base 7 notation, this number would be written as 5,062,4237c. The
equality of value between the decimal and base-7 numbers is typically shown as:

603,550 = 5,062,4237.

The subscript 7 indicates that the number to the right of the equal sign is to be interpreted as radix 7.
Because of the ubiquity of decimal numbers in our society, decimal numbers are usually written without
any subscript, and there is a corresponding assumption that a number written without subscript is a
decimal number. Therefore, the number to the left of the equal sign is written without a subscript.
Nevertheless, it is also correct, if perhaps a bit pedantic, to write:

c Is this correct? You should be able to check it out by working out the place values of each numeral in the base-7

representation of the number, and multiplying by the numeral representing the value for that position. Thus, 5,062,423 in
radix 7 is equal to the sum of:

3 x 70

2 x 71

4 x 72

2 x 73

6 x 74

0 x 75

5 x 76

Is this base-7 number equal or not equal to the decimal number 603,550?

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 9
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

603,55010 = 5,062,4237

and this notation has the advantage of being absolutely unambiguous. Note that because of the
convention that numbers written without subscripts are by default decimal, consequently 10111100
and 101111002 are two numbers of radically different value, because the first is decimal and the
second is binary. In fact, the binary number has a decimal value of only 188d.

Positional Integer Notation for Radices Greater than Ten

The problem with numbers having radices higher than ten is that the numerals with which
everyone is used to in our society extend only through nine, in consequence of the ubiquity of decimal
numbers over almost all of the last few thousand years. With the advent of digital computers, within the
field of Computer Science binary (radix 2), octal (radix 8), and hexadecimal (radix 16) numbers have
also come into common use. For hexadecimal numbers, an additional six numerals are needed, to
represent the values ten, eleven, twelve, thirteen, fourteen, and fifteen, each as a single numeral. The
convention is to use the letters A B C D E and F to serve as the needed numerals. This
scheme obviously would also work for each of the radices eleven through fifteen, with F serving only
in radix 16 as the numeral representing a value of 15, E serving in both radices 15 and 16 as the
numeral representing a value of 14, D as the numeral representing 13 in radices 14, 15, and 16, C
representing 12 in radices 13 through 16, B representing 11 in radices 12 through 16, and A
representing 10 in radices 11 through 16. Obviously, this scheme can readily be extended as far as radix
36, if necessary. Rarely are radices as large as 36 ever used. Higher values of radix are even rarer, and
additional symbols would have to be defined to represent the numerals needed for such radices.

How Many Different Numbers Can Be Represented in a Particular Positional
Notation?

It is important to be able to calculate how many different numbers can be represented using some

particular defined positional notation. There are two features of any positional notation that determine
the answer. These are: (1) the value of the radix, r, and (2) the number of numerals, n, present in the
number. Remember that r must be greater than 1. A single numeral can represent r different numbers,
because it can have any of r different values. These are: 0, 1, . . . [r -1]. For a number represented by
two numerals, the numeral on the left can have any of r different values, and for each of these the
numeral on the right can also have any or r different values. Therefore, the ordered pair of numerals can
have r2 different sets of values. If we extend the number of numerals to three, then r3 different values

d The fastidious reader will check to ascertain whether this is correct.

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 10
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

are possible. By extension, for n numerals, rn different numbers can be represented. If simple integers
are being represented, then the range of numbers extends from 0 to [rn - 1].

Radix

Numerals

How many
numbers can be

represented?

Range

r n rn 0 < (rn - 1)
10 7 107 = 10,000 000 0 < 9,999,999
2 12 212 = 4,096 0 < 4,096
16 8 168 = 4,294,967,296 0 < 4,294 967,295
7 9 79 = 40,353,607 0 < 40,353,607

Radices in Use in Human Societies

While the most common radix in use in human societies is decimal, in consequence of the

anatomical circumstance that the normal number of fingers is tene, nevertheless there are several other
radices that have also been use to some extent in certain societies over the ages. One such system is the
quinary system (base 5), in use even today by merchants in the state of Maharashtra in western India.
Another is the duodecimal system (base 12), which was used by the Assyrians, Babylonians, and
Sumerians, and that is still in use in parts of China. The vigesimal system (base 20) was used by the
Ainu people in northern Japan, and also by the Aztecs, Celts, Greenland Eskimos, and Mayans. And
finally, there is the sexagesimal system (base 60), which was used by the Babylonians and Sumerians
and that is the basis for our practice of dividing the hour into sixty minutes and the minute into sixty
seconds.

For practical reasons, computers make use of the binary number system. For ease by people in

notating and understanding the content of binary numbers, as well as for interpreting the results of
arithmetic operations carried out in binary, it is convenient to make use of either the octal (radix 8) or
hexadecimal (radix 16) number systems, both of which are readily interconvertible with binary. The
particulars of such interconversion will be covered later.

e There is an hereditary abnormality in which some people have not five but six fingers on each hand or six toes on

each foot. These conditions bear the name of polydactyly (which means “many fingers” in Greek). If six fingers and six toes
had been the norm for people instead of five, then we probably would have settled on a base 12 number system. A base 12
number system would have been much more useful than base 10, because of the divisibility of 12 by 2, 3, 4, and 6.

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 11
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

Conversion of a Number from One Radix to Another

The best way to develop facility in the understanding positional number notation in a variety of

radices is to be able to convert numbers from any starting radix ra to any destination radix rb. Such
conversion usually requires multiple operations of both multiplication and division. The trick to success
in performing such conversions comes from arranging that all the multiplications and divisions will be
done in decimal, since that is the number scheme with which most people know the arithmetic rules very
well. We shall first consider the conversion of integers from other radices to decimal, and then from
decimal to other radices. Next, we shall consider the conversion of (non-integral) rational numbers from
other radices to decimal and from decimal to other radices. Finally, we shall consider the most
productive strategy for conversion from any starting radix ra to any destination radix rb.

Conversion of Integers from Other Radices to Decimal

Conversion of an integer number from any other radix to decimal is a straightforward operation.

It is accomplished by determining first the place value of every numeral, starting from the rightmost
position (always the units digit) and then proceeding stepwise leftwards, progressively multiplying the
place value of the previous position by the radix, until the place values of all the numerals are
determined. This must be done once for a particular radix of origin; thereafter, the place values so
calculated can be re-used for converting many different numbers from that radix to decimal. The second
step, after all the place values have been determined for the starting radix, is to multiply each numeral of
the particular number being converted by its place value. This gives the decimal value contributed by
that particular numeral. Finally, the sum of the decimal equivalents of all the numerals is calculated,
thus giving the total decimal equivalent of the original number.

For example, consider the number 2,122,2203. The place values for radix 3 work out to:

Place Value
1 30 = 1
2 31 = 3
3 32 = 9
4 33 = 27
5 34 = 81
6 35 = 243
7 36 = 729

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 12
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

The value of the number 2,122,2203 in decimal thus works out to:
Place Numeral Value of the

Numeral
1 0 0 x 1 = 0
2 2 2 x 3 = 6
3 2 2 x 9 = 18
4 2 2 x 27 = 54
5 2 2 x 81 = 162
6 1 1 x 243 = 243
7 2 2 x 729 = 1458

Sum in Decimal: 1,941

Next, consider the number 2,122,2204 (same numerals as the previous number, but a different
radix). The place values for radix 4 work out to:

Place Value
1 40 = 1
2 41 = 4
3 42 = 16
4 43 = 64
5 44 = 256
6 45 = 1,024
7 46 = 4,096

The value of this number in decimal thus works out to:

Place Numeral Value of the
Numeral

1 0 0 x 1 = 0
2 2 2 x 4 = 8
3 2 2 x 16 = 32
4 2 2 x 64 = 128
5 2 2 x 256 = 512
6 1 1 x 1,024 = 1,024
7 2 2 x 4,096 = 8,192

Sum in Decimal: 9,896

Overall, please note that the conversion of an integer from an arbitrary starting radix to decimal is a
straightforward operation that takes place using multiplications and additions in accordance with the
rules of decimal arithmetic.

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 13
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

Conversion of Integers from Decimal to Other Radices:

To convert an integer number from decimal to some other radix, there is an algorithm that is
simple to execute. Simply divide the number over and over by the destination radix. Each successive
division will produce a result expressed as a quotient and a remainder. The remainder obtained from the
first division becomes the units-place numeral for the number in the new radix. Take the quotient from
the first division, and divide it once more by the new radix. The remainder from the second division
becomes the second-place numeral in the new radix, and the quotient is divided once more by the value
of the new radix. This process continues until the quotient of a division becomes zero. Any remainder
still left over at this point becomes the leftmost numeral of the number written in the new radix.

Consider the number 194110 converted to radix 7. The sequence of operations is:

Step # Operation Result
1 1941/7 Quotient = 277; Remainder = 2
2 277/7 Quotient = 39; Remainder = 4
3 39/7 Quotient = 5; Remainder = 4
4 5/7 Quotient = 0; Remainder = 5
5 Stop here: no quotient remaining

Value of Number in Base 7: 5,4427 = 194110

Check if this answer is correct by converting 5,4427 back to decimal, using the method shown earlier.

Interconversion of Integers between Any Pair of Radices:

It is important to be able to convert a number from any arbitrary radix to any other radix. This is
generally difficult to do, since the arithmetic has to be carried out in the starting radix, and the rules for
division in the general case of radix r are different from the rules of decimal arithmetic that we are used
to from daily living. The easiest way to accomplish this goal, therefore, is to convert first to decimal and
then to the target radix. Conversion to decimal is straightforward, as was shown above, and requires
exclusively operations that are performed in decimal. Likewise, conversion from decimal to any other
radix can take place using decimal arithmetic (successive division by the target radix), and are therefore
also easy to carry out. Therefore, in general to convert from radix r1 to radix r2, just convert first from
radix r1 to decimal, and then from decimal to radix r2.

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 14
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

Conversion of Fractional Numbers from Other Radices to Decimal

In general, conversion of a fractional number from some other radix to decimal is just a

straightforward extension of the conversion algorithm for integers. That is, first the decimal place
values for the different numeral positions for the source radix are calculated, which once done can serve
for the conversion of as many numbers as needed from the same source radix to decimal. This
calculation is accomplished starting from the radix point (which for decimal numbers is called the
decimal point) and proceeding outwards. Then the separate contribution to the number of each numeral
extending rightwards from the radix point must be determined by multiplying the place value expressed
in decimal by that numeral. Finally, the sum of the contributions of all numerals of the original number
must be taken.

For example, consider the conversion to decimal of the source number 0.21222203. The

place values counting rightwards from the radix point work out for radix 3 to:
Place Value

-1 3-1 = 0.333333333+
-2 3-2 = 0.111111111+
-3 3-3 = 0.037037037+
-4 3-4 = 0.012345679+
-5 3-5 = 0.004115226+
-6 3-6 = 0.001371742+
-7 3-7 = 0.000457237+

The value of the number 2,122,2203 in decimal thus works out to:

Place Numeral Value of the
Numeral

-1 2 2 x 0.333333333+ = 0.666666666+
-2 1 1 x 0.111111111+ = 0.111111111+
-3 2 2 x 0.037037037+ = 0.074074074+
-4 2 2 x 0.012345679+ = 0.024691358+
-5 2 2 x 0.004115226+ = 0.008230452+
-6 2 2 x 0.001371742+ = 0.002743484+
-7 0 0 x 0.000457237+ = 0.000000000

Sum in Decimal: 0.887517145+
The ‘+’ signs indicate that there are more digits, but that the
calculated number is purposely being truncated at an arbitrarily
chosen level of precision.

Please note that for the general case of a rational number, which will be expressed in the form of
numerals on both sides of the radix point, it is necessary to calculate the place values of the various

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 15
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

numerals going in both directions from the radix point. Several worked examples are given in the
“Review Questions on Digital Number Representation”.

Conversion of Fractional Numbers from Decimal to Other Radices

To convert a fractional decimal number to another radix, instead of performing division it is

necessary instead to multiply the fractional number successively by the radix. Each multiplication, in
general, results in a product that has both an integer part and a fractional part. The integer part resulting
from the first multiplication becomes the first numeral to the right of the radix point for the number in
the new radix. Only the fractional part of the first product is multiplied again by the value of the
destination radix to give the second product. Again, the integer portion of this product becomes the next
numeral to the right of the radix point for the number represented in the new radix. The fractional part
of the product is stripped off and multiplied once more by the value of the destination radix to give the
next product. This process continues until the desired level of precision is reached. For example, to
convert the number 0.88751714510 to base 3, the successive multiplications yield:

Multiplicand Multiplier Product Fractional Part Integer

Part
0.887517145 3 2.662551435 .662551435 2
0.662551435 3 1.987654305 .987654305 1
0.987654305 3 2.962962915 .962962915 2
0.962962915 3 2.888888745 .888888745 2
0.888888745 3 2.666666235 .666666235 2
0.666666235 3 1.999998705 .999998705 1
0.999998705 3 2.999996115 .999996115 2
0.999996115 3 2.999988345 .999988345 2
0.999988345 3 2.999965035 .999965035 2

Radix 3 Number: 0.2122212223

Notice that we had started out up above with the number 0.21222203. which we first converted up
above to the decimal number 0.88751714510 and then just now converted back to radix 3. Can you
come up with an explanation of why we ended up with a number that is slightly different from that with
which we had started out?

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 16
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

Interconversion of Fractional Numbers between Any Pair of Radices:

It is important for fractional numbers, too, to be able to convert a number from any arbitrary
source radix to any other destination radix. As for the integers, so, too for the fractions this is generally
difficult to do, since the arithmetic has to be carried out in the starting radix, and the rules for both
multiplication and addition in the general case of radix r are different from the rules for multiplication
and addition in the decimal arithmetic that we are used to from daily living. The easiest way to
accomplish our goal, therefore, is to convert first to decimal and then to the target radix. Conversion to
decimal is straightforward, as was shown above, and requires exclusively operations that are performed
in decimal. Likewise, conversion from decimal to any other radix can take place using decimal
arithmetic (successive multiplication by the target radix), and are therefore also easy to carry out.
Therefore, in general to convert from radix r1 to radix r2, just convert first from radix r1 to decimal, and
then from decimal to radix r2.

Interconversion of Mixed Numbers between Any Pair of Radices

It is necessary to be able to convert the general case of rational numbers from any starting radix

to any destination radix. To accomplish this, simply divide the number at the radix point into its two
principal components: the integer part and the fractional part. Follow the procedure already shown for
the conversion of integer numbers on the integer portion of the number, and the procedure for the
conversion of fractional numbers on the fractional portion of the number, and then reassemble the
number in the destination radix from its two components. For several worked examples, please see the
“Review Questions on Digital Number Representation”.

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 17
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

Binary Numbers

In digital computers, numbers are universally represented in some variant of binary form, that is,

as a sequence of 0’s and 1’s. Each 0 or 1 is referred to as a binary digit or bit. For a scheme in which n
bits are used to represent each number, each bit can have a value of either 0 or 1, and therefore a total of
2n different numbers can be represented. There are several different forms of binary number
representation. The various forms differ from each other in two ways: in the range of numbers
represented, and in the scheme by which a given bit sequence is mapped to a specific number within the
range. There is a very special aspect of representation of number within a digital computer that needs to
be borne in mind. When we are representing numbers with paper-and-pencil notation, if we run out of
range within a given number of numeral positions, it is usually a fairly trivial matter to add as many
numerals as may be required for the size of the number that we must represent. In digital computers,
however, we must normally face the circumstance that we are limited by the computer hardware in
terms of the number of bits that we can allocate to the representation of a number. If the number that we
must represent is out of range, then we might have to do some fancy footwork in software to provide the
functional equivalent of use of a larger number of hardware bits than are available.

We shall mainly consider various binary schemes for the representation of integers. The most

important of these are Unsigned Number, Signed-Magnitude, Ones’-Complement, Two’s-Complement,
and Excess-N representations. Of these, the simplest to comprehend is Unsigned Number
representation, and that is where we shall begin.

Unsigned Number Representation

In the Unsigned Number form of binary number representation, all numbers are treated as non-

negative integers (that is, the numbers represented are all either positive integers or zero). This is
equivalent to the general scheme for representation of integer numbers described above, and is the
absolutely simplest scheme of binary number representation.

For an unsigned number composed of n bits, a total of 2n different numbers can be represented,

and the range of numbers represented in this way extends from 0 up to a maximum value of [2n -1].
Sometimes, it is necessary to look at this issue from the opposite perspective: If we know that we must
represent some range of numbers from 0 up to N, then how many bits, n, are required to represent
them? The answer is n = (log2N), where the pair of symbols   denotes the ceiling function. This
is the smallest integer less than or equal to the value of the term enclosed by the two symbols. Thus, for
example, if we are required to represent 487 different numbers, (log2487) = 9, and therefore nine bits
are required. The reason for this is that eight bits would be too few, being able to represent only 256
different numbers. While nine bits can represent as many as 512 different numbers, which is more than

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 18
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

the 487 necessary, nevertheless since we can only have an integral number of bits, the smallest integer
greater than eight is necessary, and this comes out, of course, to nine.

In all of the binary integer representation schemes other than unsigned numbers, not only

positive but also negative numbers are represented. These schemes all differ from each other in terms of
how are the negative numbers represented as well as in the exact range numbers represented.

Signed-Magnitude Representation

In Signed-Magnitude representation, the leftmost bit is reserved as a sign bit, and the remaining

bits signify the magnitude of the number. For the sign bit, a 0 represents positive sign and a 1 represents
negative sign. Consider as an example the following two numbers:

a = 010110112

b = 110110112

The seven bits on the right side of both numbers, i.e., the magnitude bits, are identical. Only the
leftmost bit (the zero bit) is different. Examining the magnitude bits of either number, the units bit and
the 2’s bit are both 1, the 4’s bit is a 0, the 8’s bit and the 16’s bit are both 1, the 32’s bit is a 0, and the
64’s bit is a 1. Hence the magnitude of both numbers is: 1 + 2 + 8 + 16 + 64 = 91. Because of the
difference in the sign bits, a = +91 and b = -91.

Overall, in Signed-Magnitude representation, those numbers ranging from zero to [2n -1 -1] are

represented identically to the way they are represented in Unsigned-Number representation. The
remaining bit sequences, which in Unsigned-Number representation are used for numbers whose values
range from 2n - 1 to 2n, are co-opted and are used instead to represent negative numbers. Note that each
non-negative number represented has a corresponding negative number whose representation is identical
in all bit positions except the sign bit. This means that Signed-Magnitude has two representations for
zero. In 8-bit Signed-Magnitude these are 00000000 and 10000000. These are referred to as
“positive zero” and “negative zero” respectively.

Ones’-Complement Representation

In Ones’-Complement representation, to represent the negative of a number one subtracts the

positive value of the number from a special number consisting of all 1’s. Hence, the term Ones’-
Complement (with the apostrophe after the s in “Ones”). Let us examine how the negative of 91 is
represented in Ones’-Complement:

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 19
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

All 1’s (binary representation of 2n - 1 = 25510): 11111111

Binary representation of +9110: 01011011
Ones’-Complement representation of -9110: 10100100

Notice that in subtracting the binary representation of +9110 from the number consisting of all 1’s (which
for eight bits represents 25510 in Unsigned-Number representation), in every bit position where the
representation of +9110 has a 0, the representation of -9110 has a 1. Likewise, in every bit position where
the representation of +9110 has a 1, the representation of -9110 has a 0. Thus, the Ones’-Complement
representation of a negative number consists of the bit-wise inversion (hence the term “Complement”) of
the representation of the positive number of equivalent magnitude. This scheme is radically different
from the Signed-Magnitude representation, in which all bits except for the sign bit are identical between
the representation of any pair of positive and negative numbers whose magnitudes are equal.

So far, we have described how to obtain the Ones’-Complement representation of a given
number. Now, let us consider the opposite problem: Given a binary representation of a number that we
know to be in Ones’-Complement form, how do we determine the value of the number represented? The
procedure is first to examine the sign bit. If this is a 0 (signifying that a positive number is represented),
then merely compute the magnitude of the positive number in the usual way by adding up the place
values of all bit positions having 1’s. If the sign bit is a 1, that indicates that a negative number is
represented. In that case, take the Ones’-Complement of the negative number to obtain the
representation of its magnitude, and then determine the magnitude of this number as before. There are
several worked examples of conversion between decimal and Ones’-Complement representation in
“Review Questions on Digital Number Representation”.

Overall, in Ones’-Complement representation, those numbers ranging from zero to [2n -1 -1] are

represented identically to the way they are represented in Unsigned-Number and in signed-Magnitude
representations. Numbers whose magnitudes lie between 2n -1 and 2n - 1 are not represented at all. The
bit sequences that are used in Unsigned-Number representation for these numbers are co-opted in Ones’-
Complement, and are used instead to represent negative numbers. Ones’-Complement, as well as
Signed-Magnitude, has two representations of zero, a positive zero and a negative zero. The positive
zeroes are identically represented in both schemes by a bit string consisting of zeroes in all bit positions.
However, the negative zero representation differs between the two systems. In Signed-Magnitude it
consists of 10000000, but in Ones’-Complement it consists of 11111111f.

f Check for yourself, based upon the principles for representation of negative numbers in Ones’-Complement that

have been explained, to see why this is so.

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 20
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

Two’s-Complement Representation

In Two’s-Complement representation, the set of bit sequences that in Unsigned-Number

representation is utilized to represent numbers in the range of 2n -1 up to [2n - 1] is assigned to negative
numbers in a closely-related but slightly different way from how this is accomplished in Ones’-
Complement. In Two’s-Complement this is accomplished by subtracting the positive number
representing the magnitude of the number, whose negative representation is desired, from 2n rather than
from [2n -1]. To accomplish this feat conceptually, it is necessary to add an extra bit to the subtrahend
(the number from which is to be subtracted the magnitude of the number whose negative representation
is desired). This is best understood from an example such as the following for 8-bit numbers:

Binary representation of 2n = 25610 (requires a 9th bit): 100000000

Binary representation of +9110: 01011011
Two’s-Complement representation of -9110: 10100101

Note that the Two’s-Complement representation of a positive number is almost but not quite identical to
the Ones’-Complement representation of the same number. In fact, carrying out the subtraction as
shown in the illustration is cumbersome and difficult to implement in digital computers. Therefore, in
practice the process of “doing” Two’s-Complementation in a digital computer is carried out in two steps:
first “complementing” (that is, taking the Ones’-Complement of) the number and then incrementing the
Ones’-Complement.

Overall, in Two’s-Complement representation, those numbers ranging from zero to [2n -1 -1] are

represented identically to the way they are represented in Unsigned-Number and in signed-Magnitude
representations. Numbers whose magnitudes lie between 2n -1 and 2n - 1, as in the other two schemes
discussed so far that accommodate the representation of negative numbers, are not represented at all.
The bit sequences that are used in Unsigned-Number representation for these numbers are also co-opted
in Twos’-Complement, and are used instead to represent negative numbers. Two’s-Complement, in
contrast both to Signed-Magnitude and to Ones’-Complement, has only one representation of zerowhich
is equal to the positive zero of the other two schemes. The bit string consisting of all 1’s, which in
Ones’-Complement represents negative zero, in Two’s-Complement represents the number [−2n-1], which
is not represented either in Signed-Magnitude or in Ones’-Complement.. Thus, in 8-bit Two’s-
Complement the bit string 11111111 represents -12810. Note that +128 has no representation at all in
8-bit Two’s-Complementg.

Please try hour hand at interconverting between decimal notation of a number and binary

representation in Two’s-Complement form. There are several worked problems appearing in “Review
Questions on Digital Number Representation”.

g Can you explain why Two’s-Complement representation has this asymmetry in representation of positive and
negative numbers, while both Signed-Magnitude and Ones’-Complement are completely symmetrical?

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 21
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

Excess-N Representation

The final scheme of binary number representation that will be covered here is called Excess-N

representation. This scheme is important in Computer Science because it is often used for the
representation of exponents within Floating-Point numbers. In an Excess-N representation, a decimal
number is represented in binary notation. It is necessary to specify a value for N, but this is usually
equal to 2n - 1 for representation in an n-bit field. The value of N must be added to the decimal value of
the number to be represented, and then the Unsigned-Number representation of the sum is what is stored.
This is much easier to understand from illustration than from explanation. Consider an 8-bit field used
to store numbers in Excess-128 notation. To represent the number -9110:

Number to be represented: -9110
Add the value of N : -91 + 128 = +37
Unsigned-Magnitude 8-bit representation of [Number + N]: 00100101

To convert in the opposite direction, first calculate the Unsigned-Magnitude value of the bit

string representing the number, and then subtract the value of N. The result is the value of the number
represented.

Overall, in Excess-N representation, assuming that the value of N is 2n - 1, those numbers are

represented that range from −2n -1 to [+2n - 1 − 1], which is the same range as for Two’s-Complement.
However, not one of the numbers in the entire range is represented identically to the way it is
represented in any of the other binary notations that are covered in this tutorial. Numbers whose
magnitudes lie between 2n -1 and 2n - 1, as in the other three schemes discussed so far that accommodate
the representation of negative numbers, are also in Excess-N not represented at all.

Summary of Binary Number Representation

Several schemes have been discussed for the representation of integers in binary notation. The
following table summarizes these schemes. In the leftmost column, “Hexadecimal Value of Number”,
the actual value (not the representation) of the number is shown in hexadecimal. Hexadecimal numbers
have not yet been explained. The reader is advised to ignore this column for now, but to return to this
table and re-examine the leftmost column after hexadecimal numbers have been covered.

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 22
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

Binary Representations Hexadecimal
Value of
Number

Decimal
Value of
Number Unsigned

Number
Signed-

Magnitude
Ones’-

Complement
Two’s-

Complement Excess-8

-8H -8 N/R N/R N/R 1000 0000
-7H -7 N/R 1111 1000 1001 0001
-6H -6 N/R 1110 1001 1010 0010
-5H -5 N/R 1101 1010 1011 0011
-4H -4 N/R 1100 1011 1100 0100
-3H -3 N/R 1011 1100 1101 0101
-2H -2 N/R 1010 1101 1110 0110
-1H -1 N/R 1001 1110 1111 0111
-0H -0 N/R 1000 1111 N/R N/R
0H 0 0000 0000 0000 0000 1000
1H 1 0001 0001 0001 0001 1001
2H 2 0010 0010 0010 0010 1010
3H 3 0011 0011 0011 0011 1011
4H 4 0100 0100 0100 0100 1100
5H 5 0101 0101 0101 0101 1101
6H 6 0110 0110 0110 0110 1110
7H 7 0111 0111 0111 0111 1111
8H 8 1000 N/R N/R N/R N/R
9H 9 1001 N/R N/R N/R N/R
AH 10 1010 N/R N/R N/R N/R
BH 11 1011 N/R N/R N/R N/R
CH 12 1100 N/R N/R N/R N/R
DH 13 1101 N/R N/R N/R N/R
EH 14 1110 N/R N/R N/R N/R
FH 15 1111 N/R N/R N/R N/R

N/R means that the specified number is Not Represented in the particular representation scheme shown for
the current column.

Points to Ponder:

1. What is the number of substantive entries in each column of the table?
2. Do different columns have different numbers of entries, or are they all equal?
3. What determines the maximum possible number of substantive entries in a column?
4. Which is the best scheme for numbering of integers? Explain/justify your answer.
5. Describe the relationship between the contents of the adjacent columns of binary numbers for:

(a) the natural numbers; and (b) the non-positive numbers.

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 23
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

Please examine this table very carefully to be certain that you understand the various forms of number
representation. Note that the principles that govern the various schemes of number representation apply
equally to bit strings of width two or greater without upper limit. In ancient times (for Computer
Science, “ancient times” means ten or more years ago), computers were manufactured by different
companies with a great variety of “word sizes”, that is, of the lengths of bit strings used to represent
numbers inside the machine. Today the word size is universally some multiple of eight bits: either 8 or
16 or 32 or 64 or 128. The Computer Scientist needs to be thoroughly familiar with the place values for
the bits of binary numbers represented in Unsigned-Number notation, as follows:

Bit
Position

Power
of
2

Place Value

Nominal

Value

Approximate

Value
0 20 1
1 21 2
2 22 4
3 23 8
4 24 16
5 25 32
6 26 64
7 27 128
8 28 256
9 29 512

10 210 1,024 1 k 1 thousand
11 211 2,048 2 k 2 thousand
12 212 4,096 4 k 4 thousand
13 213 8,192 8 k 8 thousand

20 220 1,048,576 1 M (Meg) 1 million
24 224 16,777,216 16 M (Meg) 16 million

30 230 1,073,741,824 1 G (Gig) 1 billion
32 232 4,294,967,296 4 G (Gig) 4 billion
36 236 68,719,476,736 64 G (Gig) 64 billion

40 240 1,099,511,627,776 1 T (Tera) 1 trillion

50 250 1,125,899,906,842,624 1 P (Peta) 1 quadrillion

To compute the place value of any bit position, remember the basic exponential identity:

X(y + z} ≡ Xy × Xz

For binary numbers, the identity becomes:

CS-511: Tutorial on the Representation of Numbers in Digital Computers and on Digital Integer
Arithmetic

Page 24
15 Aug 1999; rev 13 Sep 1999

© 1999 Charles Abzug

2(y + z} ≡ 2y × 2z

What this means is that if we want to determine the place value of, for example, bit 47 (the 48th bit
position), that works out to:

248 = 28 × 240 = 256 Tera.

Display and Description of the Contents of Memory Locations and Registers:
Octal and Hexadecimal Notation

Binary Arithmetic

Floating Point Number Representation

