

Revised 27 Jan 99, 1420 hrs

© 1999 Charles Abzug

Review Questions:

Machine Code and Assembly

© 1999 Charles Abzug

1. If all the op codes of a particular computer are constrained to have the same length, i.e., the same

number of bits, then what are the critical factors that determine the minimum value of the op code
length?

2. Compare the portability of programs written in the language C with that of programs in Assembler.

Explain the factors that are responsible for the presence or the absence of portability.

3. How does “Australian Rules Football” differ from American Football?

4. What are the two kinds of labels and what is the difference between them?

5. What are the four possible fields of a Beboputer assembly language statement? Which of them are

obligatory? What more rigid field definition exists in some assemblers for other computers?

6. When are certain fields in a Beboputer Assembly Language statement forbidden?

7. What is a declaration statement?

8. What is the difference between the two unary operators ‘-‘ and ‘!’ in Beboputer assembly language?

9. Explain with the aid of a diagram the meaning of each of the principal addressing modes: Implied,

Immediate, Absolute, Indexed (which should really be called either Indexed-Absolute or Absolute-
Indexed), Indirect, Pre-Indexed Indirect, and Indirect Post-Indexed.

Review Questions: Machine Code and Assembly Language

Page 2 of 4

Revised 27 Jan 99, 1420 hrs

© 1999 Charles Abzug

Answers to Selected Questions:

1. If all the op codes of a particular computer are constrained to have the same length, i.e., the same

number of bits, then what are the critical factors that determine the minimum value of the op code
length?

Answer: The single determining factor is the total number of different op codes that must be

represented. This is, in turn, a function of the total number of instructions and the
number of addressing modes applicable to each instruction. Consider the set of
instructions {Ii}, where i ranges from 1 to n, and where each instruction Ii is
associated with some number Ai of addressing modes. Then the total number of
different opcodes that must be represented is given by:

n

N = Sumi = 1 (Ii * Ai)

The minimum length of the op codes is then defined by:

L =  (log2N) 

Note that the symbols   denote the ceiling function, which is defined as the smallest
integer equal to or greater than the quantity between the two symbols. Thus, for example,
if N has a value of 24010, then the base-2 logarithm of N will be somewhere between 7
and 8, actually very close to 8, and the ceiling function of that would be 8. Likewise, if
N has a value of 130, then again the base-2 logarithm will be between 7 and 8, in this
case very close to 7, and the ceiling function would again have a value of 8.

2. Compare the portability of programs written in the language C with that of programs in Assembler.

Explain the factors that are responsible for the presence or the absence of portability.

Answer: See text on pages 12-5 through 12-7 of Bebop Bytes Back, as well as Figure 12.4.

3. How does “Australian Rules Football” differ from American Football?

Answer: See the sidebar on page 12-7 of Bebop Bytes Back. (NOTE for excessively serious
Graduate Students: No, you do NOT need to know the answer to this question to get a good
grade for this course.)

Review Questions: Machine Code and Assembly Language

Page 3 of 4

Revised 27 Jan 99, 1420 hrs

© 1999 Charles Abzug

4. What are the two kinds of labels and what is the difference between them?

Answer: An address label defines only an address; its value is the memory address associated

with the machine instruction where its op code is placed in the program, and therefore it
is almost always utilized within the program inside square brackets as a memory
reference. Its principal utility is in specifying destination locations for circumstances
where the execution order of program operations is required to deviate from the default
sequential order. A constant label, on the other hand, defines a memory location where
data are stored; it can therefore be used in the program either inside square brackets to
specify the address of the data or without square brackets, in which case the reference is
to the contents of its memory location (i.e., its value). See pages 12-8 through 12-12 in
Bebop Bytes Back.

5. What are the four possible fields of a Beboputer assembly language statement? Which of them are

obligatory? What more rigid field definition exists in some assemblers for other computers?

Answer: The four possible fields are the Label field, the Operation field, the Operand field, and
the Comment field. In Beboputer assembly language, none of these fields is universally
obligatory, although the Operand field is obligatory when the instruction mnemonic
specifies an operation that requires an operand, and the Label field is obligatory for an
.EQU directive statement. The fields are all defined syntactically. A character sequence
that constitutes a legal Beboputer label, followed by a colon and situated either at the left
extremity of the statement line or separated from it exclusively by spaces, defines the
label field. The Operation field is either the leftmost field in the statement or the second
field after a label field, and it consists of either one of the 43 operation mnemonics listed
in Figure C.2 or one of the assembler directives (.ORG, .END, .EQU, .BYTE, .2BYTE,
or .4BYTE), also known as pseudo-ops. The Operand field in the Beboputer assembly
language consists of a single legal operand specification in the syntax appropriate to the
addressing mode of the instruction, i.e., either:

(i) an immediate operand consisting of a hex or binary value of up to 8 bits
in length or the decimal equivalent, or a label or an expression which
translates to a value of 8-bit length; or

(ii) a pair of square brackets enclosing a memory address consisting of either a
numeric value that can be expressed in up to 16 bits or a label or
expression which translates to a value of up to 16 bits, and possibly also
including a reference to the index register; or

(iii) two pairs of square brackets enclosing a memory address, and possibly
also including a reference to the index register.

The Comment field consists of the ‘#’ character followed by any number of text
characters up to the end of the statement line.

In some assemblers, the various fields are rigidly defined on the basis of number of
character positions from the leftmost extremity of the statement line. Thus, a colon might

Review Questions: Machine Code and Assembly Language

Page 4 of 4

Revised 27 Jan 99, 1420 hrs

© 1999 Charles Abzug

not be necessary to delimit the end of the label field, or a ‘#’ to delimit the beginning of
the comment field. This is an artifact of the “old days” of computer history, when
programs were entered on punched cards having 80 columns of rigidly fixed equal width,
each of which held one text character.

6. When are certain fields in a Beboputer Assembly Language statement forbidden?

Answer: Label fields are not allowed in statements bearing the .ORG or .END pseudo-ops
(directives).

7. What is a declaration statement?

Answer: A declaration statement is used to declare the value of a constant that will be used in
the program.

8. What is the difference between the two unary operators ‘-‘ and ‘!’ in Beboputer assembly language?

Answer: The unary operator ‘-‘ takes the Two’s Complement of the number specified
immediately to its right, whereas the ‘!’ operator takes the Ones’ Complement.

9. Explain with the aid of a diagram the meaning of each of the principal addressing modes: Implied,

Immediate, Absolute, Indexed (which should really be called either Indexed-Absolute or Absolute-
Indexed), Indirect, Pre-Indexed Indirect, and Indirect Post-Indexed.

Answer: See pages 12-29 to 12-32 and Figures 12.27 to 12.34 in Bebop Bytes Back, or pages C-
3 through C-12 and Figures C.1 through C.9.

