
Computer Organization and
Architecture, Pt. 2

Charles Abzug, Ph.D.
Department of Computer Science

James Madison University
Harrisonburg, VA 22807

Voice Phone: 540-568-8746, E-mail:
CharlesAbzug@ACM.org

Home Page: http://www.cs.jmu.edu/users/abzugcx

© 2003 Charles Abzug

16-Apr-2003 © 2003 Charles Abzug 2

PROGRAMMING-LANGUAGE LEVELS

1. “High-Level” Languages: relatively machine-independent.

Transportable from one machine architecture to another with at
most minimal program changes,

i.e., Platform-Independent.

One HLL statement usually resolves to several machine-language
instructions; relatively efficient.

Relatively easily understandable/readable.

2. Machine Language and the associated Assembly Language: highly dependent
upon the organization and architecture of the machine family.

Transportable only within the same computer manufacturer’s
product line for the particular architecture selected ,

i.e., Platform-Dependent.

Upwards compatible only, not downwards compatible.

One Assembly-Language statement corresponds to one machine-
language instruction; relatively speedy execution.

16-Apr-2003 © 2003 Charles Abzug 3

Carpinelli Figure 3.1:
COMPILATION and LINKAGE of PROGRAMS

in a HIGH-LEVEL LANGUAGE

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 4

Carpinelli Figure 3.2:
ASSEMBLY and LINKAGE of

ASSEMBLY-LANGUAGE PROGRAMS

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 5

Carpinelli Figure 3.A:
COMPILATION and INTERPRETIVE EXECUTION

of JAVA APPLETS

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 6

STEPS in PROGRAM REALIZATION:
(1) COMPILED LANGUAGE

1. Check source code for syntax errors; if any are found, then flag the errors,
inform the programmer, and abort compilation.

2. If no errors, then continue.

3. Generate code:
a) Optional intermediate step: generate ASL code.
b) Generate object code (principally machine code).

4. Optimize object code.

5. Linkage Editor: link in any relevant library routines to produce executable
code.

6. Load executable code into main memory.

7. Load PC with starting address of first instruction.

8. Run.

16-Apr-2003 © 2003 Charles Abzug 7

STEPS in PROGRAM REALIZATION:
(2) ASSEMBLY LANGUAGE

1. Check source code for syntax errors; if any are found, then flag the errors,
inform the programmer, and abort compilation.

2. If no errors, then continue.

3. First pass: generate symbol table, mark locations.

4. Second pass: generate machine code (object code).

5. Linkage Editor: link in any relevant library routines to produce executable
code.

6. Load executable code into main memory.

7. Load PC with starting address of first instruction.

8. Run.

16-Apr-2003 © 2003 Charles Abzug 8

STATEMENTS in ASSEMBLY LANGUAGE: Three Types
1. Machine Instructions:

2. Assembler Directives:

3. Macro Expansion Commands:

16-Apr-2003 © 2003 Charles Abzug 9

STATEMENTS in ASSEMBLY LANGUAGE: Three Types
1. Machine Instructions:

a) One line of assembly code corresponds to exactly one machine
instruction.

b) Assembled object code therefore contains one executable instruction
per line of source code.

c) Line may be rigidly formatted into fields.
d) Mnemonics are designed for simultaneous simplicity and readability.
e) Restrictions usually placed on label length and composition.

16-Apr-2003 © 2003 Charles Abzug 10

STATEMENTS in ASSEMBLY LANGUAGE: Three Types
1. Machine Instructions:

a) One line of assembly code corresponds to exactly one machine
instruction.

b) Assembled object code therefore contains one executable instruction
per line of source code.

c) Line may be rigidly formatted into fields.
d) Mnemonics are designed for simultaneous simplicity and readability.
e) Restrictions usually placed on label length and composition.

2. Assembler Directives:
a) Directive is executed at assembly time, usually resulting in some effect

either upon the placement of part or all of the assembled code into
memory or upon the content of initial data at program execution.

b) Effect on run-time events is only indirect.

16-Apr-2003 © 2003 Charles Abzug 11

STATEMENTS in ASSEMBLY LANGUAGE: Three Types
1. Machine Instructions:

a) One line of assembly code corresponds to exactly one machine
instruction.

b) Assembled object code therefore contains one executable instruction
per line of source code.

c) Line may be rigidly formatted into fields.
d) Mnemonics are designed for simultaneous simplicity and readability.
e) Restrictions usually placed on label length and composition.

2. Assembler Directives:
a) Directive is executed at assembly time, usually resulting in some effect

either upon the placement of part or all of the assembled code into
memory or upon the content of initial data at program execution.

b) Effect on run-time events is only indirect.

3. Macro Expansion Commands:
a) Purpose is to improve efficiency of the programmer.
b) Enable a frequently-used sequence of instructions to be written once,

but appear multiple times in the assembled program.
c) Macro expansion is carried out at assembly time. Each line of macro

expansion command usually results in multiple machine instructions in
assembled program.

16-Apr-2003 © 2003 Charles Abzug 12

EXECUTION of a MACHINE-LANGUAGE PROGRAM

1. Special-Purpose Registers: at least two in EVERY processor.

2. INSTRUCTION REGISTER (IR): holds the op-code of the currently-
executing instruction.

3. PROGRAM COUNTER (PC): holds the memory address of the NEXT
instruction to be executed (not the address of the instruction currently
executing).

4. MEMORY ADDRESS REGISTER (MAR): contains an address whose content
the processor needs either to write to or to read from.

5. MEMORY BUFFER REGISTER (MBR): contains a datum that the processor
needs either to copy to the memory address specified in the MAR or that is
being fetched from the address specified in the MAR.

16-Apr-2003 © 2003 Charles Abzug 13

INSTRUCTION-EXECUTION CYCLE - Version 1

1. Fetch [i.e., copy the next instruction into the INSTRUCTION REGISTER].
NOTE that the next instruction is defined to be the one located at the
memory address whose value is specified in the special-purpose register
called the PROGRAM COUNTER.

2. Decode [i.e., figure out what steps are needed to accomplish to execute the
instruction]. ALSO, increment the PROGRAM COUNTER to point to the
memory address immediately following the current instruction.

3. Execute [i.e., carry out the intent implied by the instruction definition]. IF
a JUMP instruction is to be executed, then replace the content of the
PROGRAM COUNTER with the destination address for the JUMP.

4. Repeat endlessly [i.e., GOTO Fetch].

16-Apr-2003 © 2003 Charles Abzug 14

INSTRUCTION-EXECUTION CYCLE - Version 2

1. Fetch [i.e., copy the next instruction into the INSTRUCTION REGISTER].
NOTE that the next instruction is defined to be the one located at the
memory address whose value is specified in the special-purpose register
called the PROGRAM COUNTER.

2. Decode [i.e., figure out what steps are needed to accomplish to execute the
instruction]. ALSO, increment the PROGRAM COUNTER to point to the
memory address immediately following the current instruction.

3. Execute [i.e., carry out the intent implied by the instruction definition]. IF
a JUMP instruction is to be executed, then replace the content of the
PROGRAM COUNTER with the destination address for the JUMP.

4. Is there an INTERRUPT? If so, then service it.

5. GOTO Fetch.

16-Apr-2003 © 2003 Charles Abzug 15

TYPES of EXECUTABLE
ASSEMBLY/MACHINE LANGUAGE INSTRUCTIONS

1. Data-Copy or Data-Transfer Instructions
a) Load (copy from Main Memory into CPU, or from Input Device if I/O is

memory-mapped).
b) Store (copy from CPU into Main Memory, or into Input Device if I/O is

memory-mapped).
c) Move (copy within the CPU, or possibly between CPU and Main Memory).
d) Input data from device to CPU (if I/O is not memory-mapped).
e) Output data from CPU to device (if I/O is not memory-mapped).

2. Data-Operation Instructions
a) Arithmetic instructions: Integer, Floating-Point, other.
b) Logic instructions, including both bit-wise logical operations and shifts.

3. Program Control Instructions:
a) Unconditional Jump Instruction.
b) Conditional Jump Instructions: JZ, JNZ, JN, JNN, JV, JNV, JC, JNC
c) Software Interrupts
d) Exceptions & Traps

16-Apr-2003 © 2003 Charles Abzug 16

DATA-COPY (DATA-TRANSFER) INSTRUCTIONS
in Carpinelli’s “Relatively Simple CPU”

No OPerationNOP0000 0000

Move (i.e., copy) the contents of Register R to the
Accumulator.

MOVR0000 0100

Move (i.e., copy) the contents of the Accumulator to
Register R.

MVAC0000 0011

Store (i.e., copy the contents of) the Accumulator to Main
Memory or to an output device.

STAC0000 0010 Γ

Load (i.e., copy into) the Accumulator with the contents of
either a Main Memory location or data from an input
device.

LDAC0000 0001 Γ
DescriptionMnemonicMachine Code

16-Apr-2003 © 2003 Charles Abzug 17

DATA-OPERATION INSTRUCTIONS
in Carpinelli’s “Relatively Simple CPU”

Complement the contents of the Accumulator, and adjust
the value of the Z bit.

NOT0000 1111

Bitwise “XOR” the contents of the Accumulator with the
contents of Register R, and adjust the value of the Z bit.

XOR0000 1110

Bitwise “OR” the contents of the Accumulator with the
contents of Register R, and adjust the value of the Z bit.

OR0000 1101

Bitwise “AND” the contents of the Accumulator with the
contents of Register R, and adjust the value of the Z bit.

AND0000 1100

Clear the contents of the Accumulator, and set the Z bit.CLAC0000 1011

Increment the contents of the Accumulator, and adjust the
value of the Z bit.

INAC0000 1010

Subtract the contents of Register R from the current
contents of the Accumulator, deposit the results in the
Accumulator, and adjust the value of the Z bit.

SUB0000 1001

Add the contents of Register R to the current contents of
the Accumulator, deposit the results in the Accumulator,
and adjust the value of the Z bit.

ADD0000 1000
DescriptionMnemonicMachine Code

16-Apr-2003 © 2003 Charles Abzug 18

PROGRAM-CONTROL INSTRUCTIONS
in Carpinelli’s “Relatively Simple CPU”

In the content of the Z register is a ‘0’, then execute next
the instruction situated at the specified memory location;
otherwise, execute next the instruction immediately
following the current instruction.

Or, more simply, Jump on Not Z.

JPNZ0000 0111 Γ

In the content of the Z register is a ‘1’, then execute next
the instruction situated at the specified memory location;
otherwise, execute next the instruction immediately
following the current instruction.

Or, more simply, Jump on Z.

JMPZ0000 0110 Γ

Instead of executing next the instruction following the
current instruction, jump unconditionally to (i.e., execute
next) the instruction situated at the specified memory
location.

JUMP0000 0101 Γ
DescriptionMnemonicMachine Code

16-Apr-2003 © 2003 Charles Abzug 19

Native Data Types

1. Integer and other Fixed-Point
a) Binary:

i. Non-Explicitly-Signed (“Unsigned”)
ii. Two’s-Complement
iii. Ones’-Complement
iv. Signed-Magnitude
v. Excess or Biased

b) Decimal (BCD)

2. Floating-Point: (Sign of Mantissa), Mantissa, [Radix], Exponent
USUALLY: Signed-Magnitude Mantissa, [Radix], Biased-or-Excess Exponent

3. Boolean

4. Single-Character & Character-String
a) ASCII
b) EBCDIC
c) Unicode

16-Apr-2003 © 2003 Charles Abzug 20

MODES of ADDRESSING
1. Direct Addressing Mode: Memory address is explicitly stated within the

instruction, after the op code.
EXAMPLE: LDAC memory-address, e.g.: LDAC 5
EXECUTION: Copy into the Accumulator the content of memory

address 5.

2. Indirect Addressing Mode: The memory address included within the instruction
is not the address of the operand, but rather is the address of the address
of the operand.

EXAMPLE: LDAC @address-of-operand’s-memory-address, e.g.:
LDAC @7

EXECUTION: Retrieve from address 7 a second address. Copy
into the Accumulator the contents of the second
address.

3. Register Direct Addressing Mode: The value of the operand is located within
the specified register.

EXAMPLE: LDAC register-identifier, e.g.: LDAC R
EXECUTION: Copy into the Accumulator the contents of Register R.

4. Register Indirect Addressing Mode: The memory address of the operand is
located within the specified register.

EXAMPLE: LDAC (register-identifier), e.g.: LDAC (R), or
LDAC @register-identifier, e.g.: LDAC @R

EXECUTION: Retrieve from Register R a memory address. Copy
into the Accumulator the contents of that address.

16-Apr-2003 © 2003 Charles Abzug 21

5. Immediate Addressing Mode: The actual value of the operand is stated within
the instruction.

EXAMPLE: LDAC #actual-value, e.g.: LDAC #3C
EXECUTION: Copies into the Accumulator the hex number 3C.

6. Implicit Addressing Mode: The location of the operand is implied by the
instruction itself, and can be inferred from the instruction mnemonic.

EXAMPLE: CLAC (Clear the contents of the Accumulator).
EXECUTION: Contents of the Accumulator changed to all zeroes.

7. Relative Addressing Mode: The numeric value specified within the instruction
gives the offset of the desired memory location from the current contents
of the Program Counter (NOTE: This is NOT the offset from the location
of the currently-executing instruction, but rather the offset from the
location of the NEXT instruction in sequence following the currently-executing
instruction).

EXAMPLE: JMP $offset-amount, e.g.: JMP #3C
EXECUTION: If the JMP instruction starts at memory address

F000, then the next instruction located after the
JMP will be located at F002, and after execution
of the JMP, the next instruction to be executed is
at address F03E (= F002 + 3C)

MODES of ADDRESSING (continued)

16-Apr-2003 © 2003 Charles Abzug 22

6. Indexed Addressing Mode: The numeric value specified within the instruction
gives the base address of an array, while the contents of the Index
Register indicate which array element is of current interest.

EXAMPLE: LDAC base-memory-location(X), e.g.: LDAC 102A(X)
EXECUTION: Assuming that the Index Register (Register X)

contains the value 2005, copy into the
Accumulator the contents of memory address
302F (= 102A + 2005)

7. Base Addressing Mode: A numeric value specified within a designated
register (the Base Register) indicates a particular address, from which
a numeric value indicated within the instruction gives the offset from the
base address.

EXAMPLE: LDAC offset (register-containing-the-base-address),
e.g.: LDAC 2005(102A)

EXECUTION: Copy into the Addumulator the contents of memory
address 302F (= the sum of the base memory
location 102A and the offset 2005)

MODES of ADDRESSING (continued)

16-Apr-2003 © 2003 Charles Abzug 23

Carpinelli Figure 3.3, part 1, from the text but enhanced:
GENERATION of ADDRESSES

for Various MODES of ADDRESSING, part 1

Direct addressing mode:

Indirect addressing mode:

Register Direct addressing
mode:

Register Indirect addressing
mode:

Original figure or table © 2001 by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 24

Carpinelli Figure 3.3, part 1, ENHANCED & CORRECTED:
GENERATION of ADDRESSES

for Various MODES of ADDRESSING, part 1

Direct addressing mode:

Indirect addressing mode:

Register Direct addressing
mode:

Register Indirect addressing
mode:

Original figure or table © 2001 by Addison Wesley Longman, Inc

X @R or LDAC (R)

16-Apr-2003 © 2003 Charles Abzug 25

Carpinelli Figure 3.3, part 2, from the text but enhanced:
GENERATION of ADDRESSES

for Various MODES of ADDRESSING, part 2

Immediate addressing mode:

Implicit addressing mode:

Relative addressing mode:

Indexed addressing mode:

Original figure or table © 2001 by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 26

Carpinelli Figure 3.3, part 2, ENHANCED & IMPROVED:
GENERATION of ADDRESSES

for Various MODES of ADDRESSING, part 2

Immediate addressing mode:

Implicit addressing mode:

Relative addressing mode:

Indexed addressing mode:

Original figure or table © 2001 by Addison Wesley Longman, Inc

0: JNZ $5

Instruction adds the address of the next instruction (2)
2: to the stated offset (5) to get the destination address

(7) for the jump. The number 7 is loaded into the PC.

16-Apr-2003 © 2003 Charles Abzug 27

Carpinelli Figure 3.4:
INSTRUCTION CODE FORMATS, ASSEMBLY

LANGUAGE, and MACHINE CODE

Original figure or table © 2001 by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 28

Carpinelli Figure 3.4:
INSTRUCTION CODE FORMATS, ASSEMBLY

LANGUAGE, and MACHINE CODE

NOTE: Normal practice
is to distinguish
different versions of
the same machine
instruction having
different addressing
modes either by using
different op codes
or by designating a
bit field within the
instruction format as
the mode field.

Original figure or table © 2001 by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 29

ELEMENTS of INSTRUCTION SET ARCHITECTURE

1. Registers: types, size or width for each type, number present of each type,
ASL names.

2. Machine Instructions: actions/effects, op-codes, ASL mnemonics, number of
operands (source plus destination) for each instruction.

3. Addressing modes, and the standards for their specification in ASL as well as
in machine language.

4. Procedures required for enablement and disablement of interrupts.

5. Flags: special-purpose one-bit registers.
a) Status flags: indicate the status of the latest operation:

Zero, Negative, Carry, oVerflow: set or cleared automatically by
the CPU.

b) Parity flag: set or cleared automatically by the CPU.
c) Interrupt Mask (Interrupt-enabled/disabled flag): set or cleared via

explicit command in program.

16-Apr-2003 © 2003 Charles Abzug 30

ISSUES in INSTRUCTION-SET ARCHITECTURE

1. Completeness of the instruction set: Are all necessary operations included?

2. Orthogonality of the instruction set: little or no overlap of functionality
between instructions.

3. Numbers and Types of registers:
a) Integer/Fixed-Point
b) Floating-Point
c) BCD or other special-purpose/use
d) Multi-Use Registers

16-Apr-2003 © 2003 Charles Abzug 31

Carpinelli Table 3.1:
INSTRUCTION SET

for the “RELATIVELY SIMPLE CPU”

Original figure or table © 2001 by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 32

Carpinelli Figure 3.5, ENHANCED:
INSTRUCTION FORMATS for the

“RELATIVELY SIMPLE CPU”

Three-Byte Instruction:

One-Byte Instruction:

Original figure or table © 2001 by Addison Wesley Longman, Inc:

16-Apr-2003 © 2003 Charles Abzug 33

Carpinelli Figure 3.5, ENHANCED and IMPROVED:
INSTRUCTION FORMATS for the

“RELATIVELY SIMPLE CPU”

Three-Byte Instruction:

One-Byte Instruction:

NOTE that the order of storage of the two bytes of the memory
address shown here corresponds to LITTLE-ENDIAN notation.

Original figure or table © 2001 by Addison Wesley Longman, Inc:

16-Apr-2003 © 2003 Charles Abzug 34

LOOP-SUMMATION PROGRAM
for the “RELATIVELY SIMPLE CPU”)

CLAC
STAC total % Initialize total to zero.
STAC i % Initialize loop counter to zero.

Loop: LDAC i
INAC
STAC i % Increment the stored value of the loop counter.

MVAC % Copy the loop counter to Register R.
LDAC total
ADD % Add the value of the loop counter to the total.
STAC total

LDAC n
SUB
JPNZ Loop % Go to the top of the loop, unless i = n.

HALT

16-Apr-2003 © 2003 Charles Abzug 35

IMPLEMENTATION of a HIGH-LEVEL-LANGUAGE
STATEMENT in ASSEMBLY LANGUAGE:

X = A + (B*C) + D
1. Three-Operand Instructions available on machine:

XOR R1, R1, R1 % Create in count register (R1) a content of 0.
MOV R2, R1 % Copy the 0 to calculation end-result register

(R2).
LOAD R3, B % Copy the multiplicand to Register R3
LOAD R4, C % Copy the multiplier to Register R4.

Loop: INCR R1 % Increment counter.
ADD R2, R2, R3 % Add value of multiplicand to end-result.
CMP R5, R1, R4 % Compare count to multiplier, discard the result.
JNZ Loop: % Go back and add multiplicand another time.

% Finished multiplying; Register R2 contains B*C.
LOAD R3, A % Bring the value of A into the CPU.
ADD R2, R2, R3 % Add the value of A to the product B*C.
LOAD R3, D % Bring the value of D into the CPU.
ADD R2, R2, R3 % Add the value of D into the cumulative sum.
STOR X, R2 % Copy out the final answer.

16-Apr-2003 © 2003 Charles Abzug 36

IMPLEMENTATION of a HIGH-LEVEL-LANGUAGE
STATEMENT in ASSEMBLY LANGUAGE:

X = A + (B*C) + D
2. Two-Operand Instructions (but not three-operand) available on machine:

XOR R1, R1 % Create in count register (R1) a content of 0.
MOV R2, R1 % Copy the 0 to calculation end-result register

(R2).
LOAD R3, B % Copy the multiplicand to Register R3
LOAD R4, C % Copy the multiplier to Register R4.

Loop: INCR R1 % Increment counter.
ADD R2, R3 % Add value of multiplicand to end-result.
CMP R4, R1 % Compare count to multiplier.
LOAD R4, C % Restore the multiplier to Register R4.
JNZ Loop: % Go back and add multiplicand another time.

% Finished multiplying; Register R2 contains B*C.
LOAD R3, A % Bring the value of A into the CPU.
ADD R2, R3 % Add the value of A to the product B*C.
LOAD R3, D % Bring the value of D into the CPU.
ADD R2, R3 % Add the value of D into the cumulative sum.
STOR X, R2 % Copy out the final answer.

16-Apr-2003 © 2003 Charles Abzug 37

IMPLEMENTATION of a HIGH-LEVEL-LANGUAGE
STATEMENT in ASSEMBLY LANGUAGE:

X = A + (B*C) + D
3. One-Operand Instructions (but not two- or three-operand) available on machine:

CLAC % Create in the Accumulator a content of 0.
STAC X % Initialize the value of final result to 0.
STAC Count % Initialize the value of the counter to 0.

Loop: LDAC B % Copy the value of the multiplicand to the Accumulator.
MVAC % Copy the multiplicand to Register R.
LDAC X % Load current value of end-result into the Accumulator.
ADD % Add value of multiplicand to end-result.
STAC X % Copy out the current value of end-result.
LDAC Count % Prepare to update count.
INAC % Update the count.
STAC Count % Store the updated count.
MVAC % Copy the updated count to Register R.
LDAC C % Load the value of the multiplier.
SUB % Compare the current count to the multiplier.
JNZ Loop % Continue multiplying.

% (continued)

16-Apr-2003 © 2003 Charles Abzug 38

% Continuation of ONE-Operand ASL code:
% Finished multiplying; X contains B*C.

LDAC A % Bring the value of A into the CPU.
MVAC % Copy the value of A to Register R.
LDAC X % Copy the current value of end-result (= B*C) into the

% Accumulator.
ADD % Add to B*C the value of A.
STAC X % Copy back to memory the current value of end-result

% (= A + B*C).
LDAC D % Bring the value of D into the CPU.
MVAC % Copy the value of D to Register R.
LDAC X % Copy the current value of end-result (= A + B*C) into

% the Accumulator.
ADD % Add to A + B*C the value of D.
STAC X % Copy out the final answer (= A + B*C + D).

IMPLEMENTATION of a HIGH-LEVEL-LANGUAGE
STATEMENT in ASSEMBLY LANGUAGE:

X = A + (B*C) + D

16-Apr-2003 © 2003 Charles Abzug 39

IMPLEMENTATION of a HIGH-LEVEL-LANGUAGE
STATEMENT in ASSEMBLY LANGUAGE:

X = A + (B*C) + D
4. No-Operand Instructions (but not one, two- or three-operand) available:

CLAC % Create in the Accumulator a content of 0.
PUSHAC
POP X % Initialize the value of final result to 0.
PUSHAC
POP Count % Initialize the value of the counter to 0.

Loop: PUSH B % Copy the value of the multiplicand to the Stack.
PUSH X % Load current value of end-result onto the .
ADD % Add value of multiplicand to end-result.
POP X % Copy out the current value of end-result.
PUSH Count % Prepare to update count.
PUSH #1
ADD % Update the count.
POP Count % Store the updated value of count.
PUSH Count % Re-copy the current value of count to the stack.
PUSH C % Load the value of the multiplier.
SUB % Compare the current count to the multiplier.

% (continued)

16-Apr-2003 © 2003 Charles Abzug 40

% Continuation of NO-Operand ASL code:

POP Discard % Remove from stack and discard the difference between
% multiplier and count.

JNZ Loop % Continue multiplying.

% Finished multiplying; X contains B*C.
PUSH A % Copy the value of A onto the Stack.
PUSH X % Copy the current value of end-result (= B*C) onto the

% Stack.
ADD % Add to B*C the value of A.
PUSH D % Copy the value of D onto the Stack.
ADD % Add to A + B*C the value of D.
POP X % Copy out the final answer (= A + B*C + D).

IMPLEMENTATION of a HIGH-LEVEL-LANGUAGE
STATEMENT in ASSEMBLY LANGUAGE:

X = A + (B*C) + D

16-Apr-2003 © 2003 Charles Abzug 41

Carpinelli Table 3.2:
EXECUTION TRACE

for the LOOP SUMMATION PROGRAM

Original figure or table © 2001 by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 42

Carpinelli Table 3.3:
DATA MOVEMENT (COPY) INSTRUCTIONS

for the Intel 8085 MICROPROCESSOR

Original figure or table © 2001 by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 43

Carpinelli Figure 3.6:
INSTRUCTION FORMATS

for the Intel 8085 MICROPROCESSOR

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 44

Carpinelli Table 3.4:
DATA OPERATION INSTRUCTIONS

for the Intel 8085 MICROPROCESSOR

Original figure or table © 2001 by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 45

Carpinelli Table 3.5:
PROGRAM CONTROL INSTRUCTIONS
for the Intel 8085 MICROPROCESSOR

Original figure or table © 2001 by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 46

Carpinelli Table 3.6:
EXECUTION TRACE

of the LOOP SUMMATION PROGRAM
for the Intel 8085 MICROPROCESSOR

Original figure or table © 2001 by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 47

Overview
of

Computer
Organization

16-Apr-2003 © 2003 Charles Abzug 48

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.1:
GENERIC COMPUTER ORGANIZATION

16-Apr-2003 © 2003 Charles Abzug 49

What Is a BUS?

1. Physical Bus: A set of wires operating as a unit for the purpose of conveying
data of some type (instructions or program data) between different
functional subunits of the computer.

2. Bus Protocol: A precisely defined set of rules governing how data are
transmitted over the bus: Who does What, and in What Order.

16-Apr-2003 © 2003 Charles Abzug 50

MAJOR COMPONENTS of a BUS

1. Address Lines

2. Data Lines

3. Control Lines

4. Power Lines

16-Apr-2003 © 2003 Charles Abzug 51

Types of BUSES

1. Main Bus or System Bus:
a) connects Main Memory to the CPU
b) usually the fastest bus in the system

2. Auxiliary or Local or I/O Bus:
a) connects I/O devices, usually slower than Main Memory

16-Apr-2003 © 2003 Charles Abzug 52

TYPES of MEMORY

1. Read/Write Memory (conventionally known as RAM, or “Random Access
Memory”, a name that distinguishes this kind of memory from
“Sequential Access Memory” and from “Pseudo-Random Access
Memory”)

2. Write-with-Difficulty-but-Read-with-Ease Memory (conventionally known as
ROM, or “Read-Only Memory”).

a) In its original form, the name was accurate: content was burned in at
chip fabrication.

b) Second form was PROM, or “Programmable ROM”. Generic chips
produced, could be programmed individually.

c) EPROM, or “Erasable PROM”: erased with UV light, then could be
reprogrammed.

d) EEPROM, or “Electrically Erasable PROM”: much more readily
reprogrammed than EPROM.

16-Apr-2003 © 2003 Charles Abzug 53

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.2:
TIMING DIAGRAMS for MEMORY BUS OPERATIONS

16-Apr-2003 © 2003 Charles Abzug 54

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.3:
INTERNAL ORGANIZATION of the CPU

16-Apr-2003 © 2003 Charles Abzug 55

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.4, as it
appears in the text:

INTERNAL ORGANIZATION
of a LINEAR 8x2 ROM CHIP

16-Apr-2003 © 2003 Charles Abzug 56

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.4,
CORRECTED:

INTERNAL ORGANIZATION
of a LINEAR 8x2 ROM CHIP

16-Apr-2003 © 2003 Charles Abzug 57

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.5:
INTERNAL TWO-DIMENSIONAL ORGANIZATION

of an 8x2 ROM CHIP

16-Apr-2003 © 2003 Charles Abzug 58

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.6:
CONSTRUCTION of an 8x4 MEMORY SUBSYSTEM from

TWO 8x2 ROM CHIPS

16-Apr-2003 © 2003 Charles Abzug 59

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.8:
CONSTRUCTION of an 8x4 MEMORY SUBSYSTEM

from TWO 8x2 ROM CHIPS, CONTROL SIGNALS ADDED

16-Apr-2003 © 2003 Charles Abzug 60

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.7 (a):
CONSTRUCTION of a 16x2 MEMORY SUBSYSTEM

from TWO 8x2 ROM CHIPS, SEQUENTIAL ADDRESSING

16-Apr-2003 © 2003 Charles Abzug 61

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.7 (b):
CONSTRUCTION of a 16x2 MEMORY SUBSYSTEM

from TWO 8x2 ROM CHIPS, INTERLEAVED ADDRESSING

16-Apr-2003 © 2003 Charles Abzug 62

Memory Subsystem Architecture

1. Harvard Architecture: separate memory modules for storage of data and of
instructions.

2. “von” Neumann Architecture: data and instructions intermingled in a single
memory module.

16-Apr-2003 © 2003 Charles Abzug 63

Carpinelli Table 4.1:
ALTERNATIVE CONVENTIONS for REPRESENTION

of MULTIPLE-BYTE DATA

Big-Endian Little-Endian

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 64

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.9:
An INPUT DEVICE

16-Apr-2003 © 2003 Charles Abzug 65

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.10:
An OUTPUT DEVICE

16-Apr-2003 © 2003 Charles Abzug 66

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.11:
A BIDIRECTIONAL INPUT/OUTPUT DEVICE

16-Apr-2003 © 2003 Charles Abzug 67

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.12:
CPU DETAILS for Carpinelli’s

“RELATIVELY-SIMPLE COMPUTER”

16-Apr-2003 © 2003 Charles Abzug 68

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.13: MEMORY SUBSYSTEM DETAILS
for Carpinelli’s “RELATIVELY-SIMPLE COMPUTER”

16-Apr-2003 © 2003 Charles Abzug 69

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.14:
FINAL DESIGN for Carpinelli’s

“RELATIVELY-SIMPLE COMPUTER”

16-Apr-2003 © 2003 Charles Abzug 70

Original figure or table © 2001
by Addison Wesley Longman, Inc

Carpinelli Figure 4.15:
DEMULTIPLEXING of the AD PINS

for the Intel 8085 MICROPROCESSOR

16-Apr-2003 © 2003 Charles Abzug 71

Original figure © 1979
by Intel Corporation

Carpinelli Figure
4.16:

A Minimal 8085-
based Computer

System

16-Apr-2003 © 2003 Charles Abzug 72

Original figure © 1979
by Intel Corporation

Carpinelli Figure
4.16:

A Minimal 8085-
based Computer

System:
MAGNIFIED

PARTIAL DETAIL

16-Apr-2003 © 2003 Charles Abzug 73

Original figure © 1979
by Intel Corporation

Carpinelli Figure
4.16:

A Minimal 8085-
based Computer

System:
MAGNIFIED

PARTIAL DETAIL

16-Apr-2003 © 2003 Charles Abzug 74

Register Transfer Language (RTL)

and

Micro-Operations (Micro-Ops)

16-Apr-2003 © 2003 Charles Abzug 75

Carpinelli Figure 5.1, as it appears in the text:
IMPLEMENTATION of the MICRO-OPERATION

X←Y

Direct
Connection

Bus
Connection

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 76

Carpinelli Figure 5.1, CORRECTED:
IMPLEMENTATION of the MICRO-OPERATION

X←Y

Direct
Connection

Bus
Connection

X

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 77

Carpinelli Figure 5.2, as it appears in the text:
IMPLEMENTATION of the DATA TRANSFER

α:X←Y

Direct Path

Bus

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 78

Carpinelli Figure 5.2, CORRECTED:
IMPLEMENTATION of the DATA TRANSFER

α:X←Y

Direct Path

Bus

X

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 79

Carpinelli Figure 5.3, as it appears in the text:
IMPLEMENTATION of the DATA TRANSFER

α:X←Y, Y←Z

NOTE: There must be two independent
data-transfer paths available.

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 80

Carpinelli Figure 5.3, CORRECTED:
IMPLEMENTATION of the DATA TRANSFER

α:X←Y, Y←Z

NOTE: There must be two independent
data-transfer paths available.

Q D

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 81

Carpinelli Figure 5.4:
IMPLEMENTATION of the DATA TRANSFER

α:X←Y, Z←Y

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 82

Carpinelli Figure 5.5:
IMPLEMENTATION of the DATA TRANSFER

α:X←0, β:X←1

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 83

Carpinelli Figure 5.6:
IMPLEMENTATION of the FOUR-BIT DATA TRANSFER

α:X←Y

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 84

Carpinelli Table 5.1:
ARITHMETIC and LOGICAL MICRO-OPERATIONS

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 85

Carpinelli Table 5.2, as it appears in the text:
SHIFT MICRO-OPERATIONS

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 86

Carpinelli Table 5.2, CORRECTED:
SHIFT MICRO-OPERATIONS

Original figure or table © 2001
by Addison Wesley Longman, Inc

Logical XXXXX

The corrected version corresponds to the definitions of the various types of shift
operations typically implemented in the Arithmetic Logic Unit (ALU) portion of Central
Processing Units (CPUs).

Logical XXXXX

16-Apr-2003 © 2003 Charles Abzug 87

Carpinelli Figure 5.7:
D FLIP-FLOP

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 88

Carpinelli Figure 5.8:
DATA PATHS to IMPLEMENT RTL CODE

USING DIRECT CONNECTIONS

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 89

Carpinelli Figure 5.9:
COMPLETE DESIGN IMPLEMENTING RTL CODE

USING DIRECT CONNECTIONS

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 90

Carpinelli Figure 5.10:
IMPLEMENTATION of RTL CODE

USING a BUS and TRI-STATE BUFFERS

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 91

Carpinelli Figure 5.11, as it appears in the text:
IMPLEMENTATION of RTL CODE
USING a BUS and a MULTIPLEXER

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 92

Carpinelli Figure 5.11, CORRECTED:
IMPLEMENTATION of RTL CODE
USING a BUS and a MULTIPLEXER

on

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 93

CPU Design

16-Apr-2003 © 2003 Charles Abzug 94

Major Design Principle

1. Define what the CPU must do.

2. Match its capabilities to its job:
a) Instruction Set Architecture:

instructions,
addressing modes,
programmer-accessible register set

b) Internal Registers (not programmer-accessible)
c) State Diagram, Micro-Operations, internal Data Paths, and Control
d) Control Logic to implement

16-Apr-2003 © 2003 Charles Abzug 95

Carpinelli Figure 6.1:
GENERIC STATE DIAGRAM for a CPU

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 96

Carpinelli Table 6.1:
INSTRUCTION SET for Carpinelli’s “Very Simple” CPU

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 97

Carpinelli Figure 6.2:
FETCH CYCLE for Carpinelli’s “VERY SIMPLE” CPU

AR←PC

DR←M, PC←PC+1

IR←DR[7..6], AR←DR[5..0]

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 98

Carpinelli Figure 6.3: FETCH and DECODE CYCLES
for Carpinelli’s “Very Simple” CPU

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 99

Carpinelli Figure 6.4: COMPLETE STATE DIAGRAM
for Carpinelli’s “Very Simple” CPU

ADD1: DR←M

ADD2: AC←AC+DR

AND1: DR←M

AND2: AC←AC⋀DR

JMP1: PC←DR[5..0]

INC1: AC←AC+1

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 100

Carpinelli Figure 6.5:
PRELIMINARY REGISTER

SECTION
for Carpinelli’s

“Very Simple” CPU

ADD1: DR←M
AND1: DR←M
FETCH2: DR←M

FETCH2: PC←PC+1
JMP1: PC←DR[5..0]

FETCH1: AR←PC
FETCH3: AR←DR[5..0]

FETCH3: IR←DR[7..6]

ADD2: AC←AC+DR
AND2: AC←AC⋀DR
INC1: AC←AC+1

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 101

Carpinelli Figure 6.6:
FINAL REGISTER

SECTION
for Carpinelli’s

“Very Simple” CPU

ADD1: DR←M
AND1: DR←M
FETCH2: DR←M

FETCH2: PC←PC+1
JMP1: PC←DR[5..0]

FETCH1: AR←PC
FETCH3: AR←DR[5..0]

FETCH3: IR←DR[7..6]

ADD2: AC←AC+DR
AND2: AC←AC⋀DR
INC1: AC←AC+1

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 102

Carpinelli Figure 6.7:
A “Very Simple” ALU

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 103

Carpinelli Figure 6.7:
A “Very Simple” ALU

Ripple-Carry

OR

Carry-Lookahead

Adder

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 104

Carpinelli Figure 6.8:
GENERIC HARDWIRED CONTROL UNIT

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 105

Carpinelli Table 6.2:
INSTRUCTIONS, FIRST STATES, and OPCODES

for Carpinelli’s “Very Simple” CPU

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 106

Carpinelli Table 6.3: COUNTER VALUES for the
INITIALLY PROPOSED MAPPING FUNCTION

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 107

Carpinelli Table 6.3, AUGMENTED: COUNTER VALUES
for the FINAL MAPPING FUNCTION

1000

1010

1100

1110

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 108

Carpinelli Figure 6.9: HARDWIRED CONTROL
UNIT for Carpinelli’s “Very Simple” CPU

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 109

Carpinelli Figure 6.10: GENERATION of CONTROL
SIGNALS for Carpinelli’s “Very Simple” CPU

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 110

Carpinelli Table 6.4:
MICROINSTRUCTION
EXECUTION TRACE

for ALL
INSTRUCTIONS
of Carpinelli’s

“VERY SIMPLE” CPU

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 111

Carpinelli Figure 6.11: FETCH and DECODE CYCLES
for Carpinelli’s “Relatively Simple” CPU

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 112

Carpinelli Table 6.5: INSTRUCTION SET
for Carpinelli’s “Relatively Simple” CPU

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 113

MICROINSTRUCTIONS for Carpinelli’s
“RELATIVELY SIMPLE CPU”

FETCH1: AR←PC
FETCH2: DR←M, PC←PC+1
FETCH3: IR←DR, AR←PC

NOP1: —

ADD1: AC←AC+R, If (AC+R = 0) then Z←1, else Z←0

SUB1: AC←AC-R, If (AC-R = 0) then Z←1, else Z←0

INAC1: AC←AC+1, If (AC+1 = 0) then Z←1, else Z←0

AND1: AC←AC⋀R, If (AC⋀R = 0) then Z←1, else Z←0

OR1: AC←AC⋁R, If (AC⋁R = 0) then Z←1, else Z←0

XOR1: AC←AC⊕R, If (AC⊕R = 0) then Z←1, else Z←0

NOT1: AC←!AC, If (!AC = 0) then Z←1, else Z←0

MVAC1: R←AC

MVR1: AC←R

CLAC1: AC←0, Z←1

16-Apr-2003 © 2003 Charles Abzug 114

MICROINSTRUCTIONS for Carpinelli’s
“RELATIVELY SIMPLE CPU” (continued)

STAC1: DR←M, PC←PC+1, AR←AR+1
STAC2: TR←DR, DR←M, PC←PC+1
STAC3: AR←DR,TR
STAC4: DR←AC
STAC5: M←DR

JPNZY1: DR←M, AR←AR+1
JPNZY2: TR←DR, DR←M
JPNZY3: PC←DR,TR

JPNZN1: PC←PC+1
JPNZN2: PC←PC+1

LDAC1: DR←M, PC←PC+1, AR←AR+1
LDAC2: TR←DR, DR←M, PC←PC+1
LDAC3: AR←DR,TR
LDAC4: DR←M
LDAC5: AC←DR

JUMP1: DR←M, AR←AR+1
JUMP2: TR←DR, DR←M
JUMP3: PC←DR,TR

JMPZY1: DR←M, AR←AR+1
JMPZY2: TR←DR, DR←M
JMPZY3: PC←DR,TR

JMPZN1: PC←PC+1
JMPZN2: PC←PC+1

16-Apr-2003 © 2003 Charles Abzug 115

Carpinelli Figure 6.12: COMPLETE STATE DIAGRAM
for Carpinelli’s “Relatively Simple” CPU

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 116

Carpinelli Figure 6.13:
PRELIMINARY REGISTER
SECTION for Carpinelli’s
“Relatively Simple” CPU

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 117

Carpinelli Figure 6.14: BIDIRECTIONAL DATA PIN
(GENERIC)

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 118

Carpinelli Figure 6.15:
FINAL REGISTER

SECTION for Carpinelli’s
“Relatively Simple” CPU

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 119

Carpinelli Figure 6.16: ARITHMETIC LOGIC UNIT
for Carpinelli’s “Relatively Simple” CPU

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 120

Carpinelli Figure 6.17: HARDWIRED CONTROL UNIT
for Carpinelli’s “Relatively Simple” CPU

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 121

Carpinelli Table 6.6: STATE DEFINITIONS
for Carpinelli’s “RELATIVELY SIMPLE CPU”

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 122

Carpinelli Table 6.7: CONTROL SIGNAL VALUES
for Carpinelli’s “RELATIVELY SIMPLE CPU”

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 123

Carpinelli Figure 6.18 (a):
REGISTER SECTION

for Carpinelli’s
“Relatively Simple” CPU
Using MULTIPLE BUSES

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 124

Carpinelli Figure 6.18 (b): REGISTER
SECTION for Carpinelli’s “Relatively
Simple” CPU Using MULTIPLE BUSES

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 125

Carpinelli Figure 6.19: INTERNAL ORGANIZATION
of the Intel 8085 Processor

Original figure or table © 2001
by Addison Wesley Longman, Inc

16-Apr-2003 © 2003 Charles Abzug 126

END

