The Evaluation of Computer Performance

CS350 Computer Organization and Architecture

 Section 3 Term Project

Spring 2001

Elizabeth Cramer
Bryan Driskell

Yassaman Shayesteh
Table of Contents

1Introduction

Purpose of Performance Evaluation
1
History of Performance Evaluation
2
Performance Measurement
5
Measuring Performance
5
Choosing Programs to Evaluate Performance
6
The Role of Requirements and Specifications in Performance Testing
7
Some Problems with Benchmarking
7
Summarizing Performance Tests
7
Rating Methodology
9
Conclusion
10
Bibliography
11

The Evaluation of Computer Performance

Introduction

Computer performance is one of the most important factors in the total evaluation of a computer system. Along with cost, availability, reliability, serviceability, and security, it is considered a key factor that determines the quality and effectiveness of a computer system (Lavenburg, 1). There are many subsystems that contribute to the overall performance of a computer system and its main components, the hardware and software, therefore, performance is one factor that is considered in the original stages of a system’s design, development, and configuration. There are many system hardware and software components that must be carefully considered for the implication of a most effective computer system.

Purpose of Performance Evaluation

There are many reasons to measure computer performance. Computer companies strive to market the most effective combinations of hardware and software that they can provide for general-purpose user functions. IBM’s [and surely other companies’] goal is to maximize its profit while providing sufficient hardware and software to meet customer needs (Merrill, 3). The customer wants to minimize their costs for the system while meeting their own performance needs. This requires the effective balance of providing flexibility for all users while still meeting the maximum utility for each specific installation. “Thus the primary purpose for computer performance measurement and evaluation is to optimize a general-purpose computing system for a specific installation’s objectives” (Merrill, 3).

According to Merrill’s statement of purpose for a system, there are two main concepts important to the measurement effort of system performance: objectives and optimization. First objectives must be established, then changes can be measured and optimization met. Objectives are said to be statements of what values certain variables should assume (Merrill, 4). It is assumed that if the measured values are too different from the objectives, than there will be a degree of discontent with the performance. The users may be unhappy with the performance, or the manufacturer is not happy with the cost of the products.

There are certain objectives that are naturally desired with the design of every computer system. The user may have unwritten objectives that are met or not met at the expected level of service of each level of investment. The most important role of the computer measurement effort is in selecting the appropriate criteria to be defined as objectives, proposing their acceptance, and measuring them against objectives. All transactions of a system are entered into the system at a given time, receive service, and produce a result. Basic objectives are therefore defined in two concepts: response time received, and resources consumed.

Besides evaluating the system for meeting objectives, computer manufacturers are also concerned with performance as a function of computer characteristics for the production function approach, whereas computer cost can be expressed as a function of computer performance and characteristic prices for the cost function approach (Kang, 586). It is therefore desired to have price data on computer characteristics in order to estimate cost function. This is not a wholly accepted method of cost analysis, as there are no explicit prices for certain computer characteristics and it is therefore impossible to determine the price of a computer based solely on a rate such as MIPs. Instead the cost function is determined with the computer characteristics and performance under the assumptions of minimizing cost and maximizing profit.

The often ill-made assumption that system cost can be determined from a series performance tests is just one problem with performance evaluation. There are two other main problems discussed by Hellwanger et al. One concern is that the goal of evaluation is often ill-defined. Customers and manufacturers are not certain what exactly they are aiming to test and what the expected results are. They are often unsure as to the proper method to test the requested metric. The other main problem is that the evaluators rarely clarify the evaluation model and method that best suits the evaluation problem. These are not new problems, but concerns that run the course of a difficult history of computer performance evaluation.

History of Performance Evaluation

Performance was an important aspect of computing since the first designers. For example the ENAIC was developed to be 1000 times faster than the Harvard Mark I and the IBM stretch 7030 was developed to be 100 times faster than the fastest machine of the time (Hennessy and Patterson, 77). The problem in the early stages of development was how exactly to measure performance. The original measure of performance was the amount of time required to perform an individual operation, such as addition (Hennessy and Patterson, 77). Originally the amount of time needed to execute a single instruction was nearly the same. Over time, however, the necessary time for instructions in a machine became more diverse and the time required for one operation was no longer a good measure for comparisons. A new way to measure performance time was developed. An instruction mix was calculated by measuring the relative frequency of instruction in a computer across many programs (Hennessy and Patterson, 77). Users could calculate the average instruction execution time by multiplying the time for each instruction by its weight in the mix. This was equal to the calculation of the currently used average CPI time. After the measurement of the average instruction execution time the more significant measurement of MIPS became recognized as the most useful and popular measurement.

MIPS (million instructions per second), is one of the most popular and misused performance metrics. This metric is calculated by the formulas:

[native] MIPS = Instruction Count / (Execution time * 10^6)

[native] MIPS = Clock Rate / (CPI * 10^6)

Native MIPS are essentially a measure of the instruction execution rate for a particular machine. MIPS specifies performance inversely to execution time; faster systems have higher MIPS ratings. There are however, three problems with using MIPS as a measurement for comparing machines (Hennessy and Patterson, 61). First is that although MIPS specifics the instruction rate, it does not depend on the instruction set. Therefore the evaluator cannot compare computers with different instructions sets using MIPS because the instruction count will differ. Secondly, the MIPS varies between programs on the same computer; therefore a machine cannot have a single MIPS rating. Most importantly, the MIPS can vary inversely with performance. This is seen in the following example from Hennessy and Patterson, page 62, where the answer determined from using the formula of MIPS = Clock rate/(CPI * 10^6), varies from the answer determined by the formula MIPS = CPU clock cycles/instruction count. Both are valid formulas, leading to different values for the MIPS rating.

An even more misleading value is the peak MIPS, obtained by choosing an instruction mix that minimizes the CPI, even when the mix is impractical. This value was often used by manufacturers as a way to advertise an impressive number to uninformed consumers. It is actually a worthless number that cannot be said to determine anything about the overall system performance.

Performance measurement by benchmarking does not develop in an orderly fashion. In the 1970s MIPS were used to compare the performance of the IBM 360/370 implementations because they were identical architectures and thus had identical instruction counts. The development of relative MIPS made it even easier to extend the use of the MIPS rating. Throughout the 1970s and 1980s the development of the supercomputer industry drove the development of high performance floating-point intensive programs. During this time it became clear that average instruction time and MIPS were inappropriate measures of performance. In response to this problem a new measurement was developed(the MFLOP.

MFOPs (million floating-point instructions per second), is determined by the following formula:

MFLOPS = Number of floating-point operations in a program /

(Execution time * 10^6)

The MFLOPS rating is dependent on the program. Varying programs require the execution of different numbers of floating-point operations. MFLOPS is more useful than MIPS because the same program running on different machines may have execute a different number of instructions, but it will always execute the same number of floating-point operations. However, since the set of floating-point operations is not always consistent across machines, the number of operations is not always the same in each program. Another problem with MFLOPS is that not all compilers use floating-point arithmetic and could therefore not be applicable to MFLOPs rating. Many machines now use integer arithmetic.

There are two other major problems with the MFLOPS rating (Hennessy and Patterson, 65). One is that the MFLOPS rating changes according to the mixture slow and fast floating-point operations. The only way to account for this difference is to develop a normalized MFLOPS that can count the number of floating-point operations in a high level language program. The other problem is that the MFLOPS rating for a single program cannot be used to determine a single performance metric for the overall system. The use of many MFLOPS ratings including peak, maximum, and normalized makes this dilemma even more confusing and the value of MFLOPS even less useful.

Unfortunately most customers did not fully understand the measure of MFLOPs, and it soon became a marketing ploy for competitors of the supercomputer industry to quote their peak MFLOPS in an effort to display superiority. The peak MFLOP however, does not measure the most significant value and it became apparent that a more useful measurement was needed.

The most obvious solution to the problem was to invent a set of real applications to be used as standard evaluation tests, or benchmarks. However, this was not an easy task. The variations in operating systems and language standards made it difficult to create large programs that could be moved to various machines just by recompiling (Hennessy and Patterson, 78). Instead of developing real applications as tests, the new standard became synthetic programs. One of the most popular of these programs was the Whetstone synthetic program, written in Agol 60 and later converted to Fortran. This was widely used to characterize scientific program performance. Whetstone performance is now quoted as the number of executions of one iteration of the Whetstone benchmark, called Whetstones, per second.

While the Whetstone benchmark was being developed the concept of kernel benchmarks also gained popularity. Kernels are small time-intensive pieces from real programs that are extracted and used as benchmarks (Hennessy and Patterson, 79). They were especially used for benchmarking supercomputers. Kernels are mostly used for highlighting the performance of individual features of a machine. They also explain the differences in the performance of real programs. The disadvantage of kernels is that they often overstate the performance of real applications. An example of this is that supercomputers sometimes achieve a high percentage of peak performance on the kernels, while the performance on real applications is much less than the peak performance.

The development of toy programs as benchmarks was another misstep in the development of better benchmarking methods. These small programs became popular when universities were particularly interested in designing early RISC machines. The small programs were between 10 and 100 lines of code, easy to compile and run on simulators and therefore became quite popular. It is now understood that these toy programs are most useful in the beginning of development stages of programs.

One of the most useful developments in performance evaluation was the formation of the System Performance Evaluation Cooperative (SPEC) group in 1988. The SPEC group includes leaders of major computers who agree of a set of real programs and inputs. SPEC must change with the times in order to remain useful to the current computers. A throughput measure was added in 1991 to evaluate timeshared usage of a uni- or multiprocessor. Other additions to the SPEC recommendations include the system benchmarks that include OS and I/O intensive activities. SPEC offers benchmark sets such as the SPEC92 in 1992, which added new benchmarks to the existing set and provided separate means for evaluating integer and floating-point operations.

Although SPEC was initially created as a altruistic effort by many major companies it has become an important part of the marketing and sales efforts of the computer industry. Benchmarks and the rules for running them are made by company representatives that compete by advertising the results. Conflicts often result from differences in the companies perspectives and the consumers. Developing the benchmark sets has become hard and time-consuming and the search for efficient benchmarks continues.

Performance Measurement

Performance measurement is used in the analysis of existing systems to make projections about the performance of new systems and their design. When someone says that computer A has better performance than B, what does they mean? One may mean a faster program, the system that gets the job done first, and another may consider the system that computes the most jobs. In fact, users are most interested in reducing response time, “time between the start and completion of a task” (Hennessy and Paterson, 50), whereas computer manufacturers are most interested in increasing through put, ”the total amount of work done in a given time” (Hennessy and Paterson, 50). We can relate performance and execution time for a machine X by the formula below:

Performance x = 1/execution time x

Therefore, if we want to compare two machines, say X and Y, it is obvious that if X is n times faster than Y, then the execution time on Y is n times longer than it is on X.

Measuring Performance

Time is the best measure of performance. Wall clock, response or elapsed time is the total time required to complete a task. However, CPU time does not include time spent waiting for I/O or running other programs. There is a further division: User CPU time and System CPU time ”CPU time spent in the Operating System performing tasks on behalf of the program” (Hennessy and Paterson, 52). Therefore, there is a distinction between performance based on elapsed time, the so-called "System performance," and that based on the CPU time, called "CPU performance".

Computers have a clock that runs at a constant rate and determines when events take place in the hardware. These time intervals are clock cycles. A clock period is “the time for a complete cycle (nano seconds) and clock rate, the inverse of clock period (mega hertz)” (Hennessy and Paterson, 53). With this in mind, we can measure CPU execution time by the formula below:

CPU Execution Time for a program = CPU clock cycle / clock rate (I)

It is clear from this formula that the hardware designer can improve the performance by reducing either the length of the clock cycle or the number of clock cycles required for a program. We can also rewrite the above formula (I) as:

CPU Execution Time = (Instruction Count * CPI) / Clock rate

Instruction count is the number of instruction executed by the program and CPI stands for the clock cycles per instruction. This formula is more useful since it separates the three major key factors that affect performance. We can also measure CPU clock cycles by the formula below:

 n

CPU clock cycles = ((CPIi*Ci)

 I= 1

Where Ci is the count of the number of instruction of class executed and CPIi is the average number of cycles per instruction class, and n is the number of instruction classes.

However, one needs to be careful not to generalized the fact that any code that executes the fewest number of instructions is the fastest. The performance actually depends on the CPU clock cycles. The smaller the clock cycles and the lower the CPI, the faster the program is. The table below shows the basic components of performance and how each is measured.

Components of performance
Units of measure

CPU execution time for a program
Seconds for the program

Instruction count
Instructions executed for the program

Clock cycles per instruction (CPI)
Average clock cycles/Instructions

Clock cycle time
Seconds/Clock cycle

[Hennessy and Patterson, 58]

Choosing Programs to Evaluate Performance

There are many tools used to evaluate computer performance. They include timings, benchmarks, simulations, analytical modeling and both hardware and software monitors. Benchmark testing is a well-known method to test computer performance. “It is a test used to compare performance of hardware and software” (webopedia). The term benchmarking is believed to date from the Renaissance, when skilled craftsmen seeking a way to make furniture parts to a higher tolerance, drew lines on their workbench. Therefore, benchmarking simply means, selecting an event or level of performance on a task as the baseline against tasks that will be measured. As with any measurement technique, you really have to understand what it is that you are trying to measure for the results to make sense. Rule number one in benchmarking is to pick a standard of measurement that is both definable and remains constant over the long run. Computer benchmarks break down into two broad categories: application benchmarks and synthetic benchmarks.

1. Application benchmarks
Application benchmarks “run one or more application and perform a set of specified tasks on predefined files and measure the time it takes to complete these tasks” (Needleman). If the tasks are relevant to the type of tasks you perform, then this type of benchmark will tell you the real difference in performance between two systems or the differential produced by an upgraded. The most commonly used benchmark is SysMark. However, it is not hard to create your own application benchmark. You can look at the application you use most often, then time the process either with a stopwatch or by reading and printing the system clock as the first and last operation of the process.

Notice that these are real programs (i.e. Microsoft Word, PowerPoint, Netscape Navigator, Word Perfect, Corel Draw) being run and timed. The test does not mimic what these applications do. It actually runs the programs and instructions (commands that the application can perform).

2. Synthetic benchmarks

 Synthetic benchmarks “attempt to emulate an application benchmark by using a mix of instructions that mimic the application's processes” (Needleman). Examples are System Information Utility, Dhrystins or Whetstones. The problem with this type is that what they actually measure if often unclear. Rule number two is to use benchmarks that measure the system attributes that you are interested in.

3. Other Tests

There are two other tests: Playback and Inspection tests. “Playback tests use logs of system calls made during specific application activities like displaying graphics and disk usage, and then plays these logs back one by one.” (ZDNet) Playback tests will allow you to see how your system performs during specific parts of an application being executed on your system. Feasible playback technology gives the most realistic way to measure individual subsystems in isolation. It could be the start-up of that application (initialization and configuration), basic runtime of the most used commands, idle runtime of the application, or the application could be maxed out with too many instructions or very complex instructions. Lastly “Inspection tests verify a bug-free behavior measuring performance on an operation by operation basis by directly exercising specific subsystems”(ZDNet).

The Role of Requirements and Specifications in Performance Testing

It is necessary to have a performance requirement document. Requirements can be provided in terms of throughput or stimulus response time. It is important to have the requirements concrete and verifiable. Evaluators must be able to check and see whether or not the requirements are fulfilled.

Some Problems with Benchmarking

As I mentioned before, the system’s behavior on the benchmarks is an indicator of how the system will behave in the field. However, an issue is that the notion of a representative workload is problematic. Where should the data come from? What is the best representative workload? The solution is to look at an operational profile: “A probability distribution describing the frequency with which selected important operations are exercised” (Collins). A second issue is whether the benchmark should reflect an average, heavy or stress workload. If so, it would be necessary to consider the window of observation from which the average or stress load will be taken.

Provided that a representative load has been selected as the benchmark, the observed throughput or response time discussed earlier would be an accurate reflection of the behavior that the user can expect to see.

Summarizing Performance Tests

Doing a performance test is much like running a science experiment. It is ideal to have components of the system stay constant and have one variable (component) that changes (i.e. the CPU chip type). This way it is much easier to determine why or what caused the results to vary when multiple tests are taken with multiple chip brands of the same speed. But there is a problem. It is impossible to have all the components of a system exactly the same when testing an array of chip brands (or any other component). Different style motherboards must be used to accompany certain chip brands. This is one reason why benchmarks are not one hundred percent reliable.

Experts in this field have found ways to compensate for this problem. Red Hill Technology a leading computer retailer based in Ballarat, Victoria, Australia, uses the “industry-standard” Business Winstone benchmarks which use similar performance rating components to test different brand chips. Red Hill says “These are the boards we normally use when we are building a new PC: high end boards, for high-end systems, entry-level boards for budget systems. We also follow our standard set-up practices. Usually, this means to manufacturer specification, but not always.” Their site does not promoting any one chip, but explains how to use their benchmark programs.

Winstone is a system performance test which measures the speed of the whole system, not just the CPU chip. A system level performance test runs real applications and then times how long it takes these applications to run or execute the specified instructions. This gives the best measure of how the system performs in the real world. Notice that these are real programs (i.e. Microsoft Word, PowerPoint, Netscape Navigator, Word Perfect, Corel Draw) being run and timed. The test does not mimic what these applications do. It actually runs the programs and instructions (commands that the application can perform).

To say one computer is 50 milliseconds faster than another computer is very ambiguous. The two typical questions are: What components are installed in the computer? What programs are being run? After multiple benchmarks are run, it is most useful to summarize this data into a single performance measure rather than having to compare hundreds of individual tests. James Smith is a systems architect developing a high performance scientific computer system for Astronautics Corporation of America in Madison, Wisconsin. According to Smith there are two properties for good performance measurements. The first property is that “A single number performance measure for a set of benchmarks expressed in units of time should be directly proportional to the total time consumed by the benchmarks.”(Smith, 1203) Time all by itself is a useless measurement, time is most useful in benchmarking when used as a rate (i.e. MFLOPS, millions of floating point operations per second). What this property asserts is that if a computer is n times faster than another computer using time then it is also true that that computer is n times faster when using a rate (i.e. MFLOPS). So if computer one is twice as fast as computer two, then it is also true that computer one does twice as many MFLOPS as computer two. The second property of good performance is “A single- number performance measure for benchmarks expressed as a rate should be inversely proportional to the total time consumed by the benchmarks.” (Smith, 1204) This says that any rate (i.e. distance/time) is inversely proportional to time for a certain amount of computation or operations. All rates are expressed by dividing computation over an amount of time.

Smith also makes a great point about how to summarize theses results. He says it is very mathematically wrong to take two rates and average them together, because it fails the second property. In order to compute an average of two rates a Harmonic Mean must be taken:

Harmonic-Mean = n / ((1/ Mi)

Where Mi = the performance measured in MFLOPS. “Taking the harmonic mean is equivalent to taking the total number of floating point operations and dividing by the total time.”(Smith, 2505) It is important to be clear that it is safe to average single-number performance measures expressed solely in time, just not as a rate.

Many consumers use benchmark results to find the best system on the market. Companies like Ziff Davis release unbiased results for consumers. Although they are unbiased, they can be very confusing if you do not have enough systems to compare the results against. Most benchmark companies use single numbers with no units. The descriptions of what these numbers stand for are as ambiguous as “bigger is better.” Most computer review websites like Ziff Davis have tiny links to the corporation site of the benchmark software they used. On the corporation site you will have to search again for a tiny link of how they come up with their performance numbers and what they mean.

When researching performance results from hardware companies like Intel or American Micro Devices (AMD), a lot of the given figures are misleading to promote their product or demote the competition’s product. The figures that Intel gives for their Pentium 4-processor chip are mostly unit-less. This can be quite confusing especially for a beginner. It is very important to know the unit of measurement to determine how the numbers compare (i.e. 1 millimeter compare to 2 millimeters has a small difference or spread (for statisticians) compared to the range that 1 meter has compared to 2 meters) to each other.

The first thing you should look for is the computer specifications or configurations that were used when the benchmark test was done. Compare this set-up to the reference system that these benchmark results will be compared against. Be sure that these components are somewhat similar, obviously the system board cannot be the same when testing two different chips. You may have to do some research on these components too. For example, it would be logical to think that memory using a PC2100 would be better than a PC800, but the PC2100 DDR SDRAM pushes 2.1 Gigabytes of information per second, while the PC800 RDRAM pushes 3.2 GB/sec (3DN.net).

The second thing you would do is find out what the benchmark scores mean. The scores are dependent on the brand of benchmark suite used. SYSmark’s website states what these numbers mean and how to use them. This is a typical example of the spectrum of performance benchmark results for a productivity benchmark using SYSmark.

Pentium® 4 processor
1.30
GHz
1.40
GHz
1.50
GHz

SYSmark* 2000—Win*Me
160
170
178

SYSmark*2000—Win*2000
188
199
205

[Intel Corporation]

Rating Methodology
After SYSmark 2000 is run on a system to be evaluated, it assigns the system a performance rating for each application, a rating for each category, and an overall rating. The application ratings are based on a comparison of workload run times between the system being tested and a fixed calibration platform. A rating of 100 indicates the test system has performance equal to that of the calibration platform, 200 indicates twice the performance of the calibration platform, etc. Each category rating is simply a geometric mean of the workload ratings in the category. The overall rating is a weighted geometric mean of the category ratings. The SYSmark 2000 calibration platform has the following configuration:
Motherboard: Based on the Intel 440BX motherboard
CPU: Intel Pentium III processor
Core Frequency: 450 MHz
Memory: 128MB DIMM
Video/Resolution: Diamond Viper V770 Ultra, 32 MB, 1024x768 16 bpp.
Disk: IBM* DJNA 371800
Operating System Windows* 98 Second Edition
*A system that scores a SYSmark 2000 rating of 200 is twice as fast as the Calibration Platform.
[BAPCo]

This gives the basic information to make inferences about what these numbers mean. Using the Windows 2000 operating system we can see that the Pentium 4- 1.5 GHz processor is about 2.05 times faster than the Pentium III – 450 GHz, with respect to the motherboards that were used the other configurations.

For the average Joe who uses benchmark software to test his personal system it would not be very productive if he did not have another set of system results, using the exact brand of benchmark suite and the same version number, to test it against. Joe might think it is pretty cool that his monitor can do something at 100 thousands of bytes per second but it this is meaningless unless he knows the same types of results from another monitor.

Conclusion

Computer performance is one of the most important factors of total computer system evaluation. Performance can be measured by many metrics, but time in many forms is the most accurate and useful measurement. The use of benchmarks continues to grow as the most commonly used tool in performance evaluation, with new and improved benchmarks available often. The methods of performance evaluation will certainly continue to develop as quickly as the growth of the supercomputer itself, meeting the demands of both the manufacturer and the user, for better performance and lower costs for everyone.

Bibliography

3DN.NET (2000). “Pentium 4 vs. Athlon DDR Grudge match above 1GHz.” URL:

http://www.tech-report.com/reviews/2001q1/p4-vs-athlon/

Anderson, J. Wayne. (1985). “Information Systems Performance Measurement and

Evaluation.” Proceedings of the 1985 ACM Computer Science Conference- Agenda for computing research: The challenge for creativity. 184.

Business Applications Performance company (2001). “SYSmark2000.” URL:

http://www.bapco.com/sysmark2000primer.htm
Collins, Robert R. (1998). “Benchmarks: Fact, Fiction or Fantasy?” Dr. Dobb’s Journal.

Article 3.

Encyclopedia Britannica. (2000). “Encyclopedia Britannica.” URL: www.britannica.com/magazine/print?ebsco_id=341368
Fleming, Philip J. and John J. Wallace. (1986). “How Not to Lie with Statistics: The

Correct Way to Summarize Benchmark Results.” Communications of the ACM. 29, 218-221.

Hellwagner, Hermann et al. (1996). “Structured Evaluation of Computer Systems.”

Computer, 29, 45-51.

Hennessy, John C. and David A. Patterson (1994). Computer Organization and Design:

Hardware Software Interface. San Francisco, CA: Morgan Kaufman Publication Inc.

Houston, Jerry. (1984). “Don’t Bench Me In.” Byte. 9, 160-162.

Intel Corporation (2001). “Intel® Pentium 4 Processor and Intel 850 Performance Brief.”

URL: http://www.intel.com/procs/perf/pentium4/brief/tables.htm#appatest
Kang, Young Moo.(1989). “Computer Hardware Performance: Production and Cost

Function Analysis.” Communications of the ACM. 33, 586-593.

Karp, Alan, H. and Horace P. Flatt. (1990). “Measuring Parallel Processor Performance.”

Communication of the ACM. 32, 539-543.

Lavenburg, Steven S. (1983). Computer Performance Modeling Handbook. New York,

NY: Academic Press. ISBN: 0-12-438720-9.

Marvit, Peter. (1984). “Benchmark Confessions.” Byte. 9, 227-230.

Merrill, H.W. (1983). Merrill’s Guide to Computer Performance Evaluation: Analysis of

SMF/RMF Data with SAS. Cary, NC: SAS Inc. ISBN: 0-917382-09-9.

Needleman, Ted. (1999). “Benchmarking your PC.” Popular Electronics. July 1999.

Smith, James. (1988). “Characterizing Computer Performance with a Single Number.”

Communication of the ACM. 31, 1202-1206.

Raike, William M. (1985). “Megabits and Gigaflops.” Byte. 10, 355-360.

Red Hill, Inc. (1999). “The Red Hill Guide to CPU Performance.” URL:

http://www.redhill.net.au/hw-cpu-test-speed.html

Vokolos, Filippos, I. and Elaine J. Weyuker. (1998) “Performance Testing of Software

Systems.” Proceedings of the first international workshop on Software and performance. 1998, 81.

Webopedia. (1996) “Webopedia” URL:

 http://www.webopedia.com

ZDNet. (2000) “ZDNet” URL: http://www.zdnet.com/etestinglabs/stories/benchmarks/0,8829,2387731,00.html

PAGE
2

