Interesting Points of the SPARC Processor

By

Saunders Roesser

CS-585-1: Computer Architecture

Summer 2002

Table of Contents

- 3 -Introduction

- 3 -Windowing

- 5 -SPARC Traps

- 7 -Memory Model

- 8 -Conclusion

- 9 -Figures and Tables

- 11 -Bibliography

Introduction

The SPARC architecture is a reduced instruction set chip (RISC) that first appeared in the early 1980’s and it is still a very popular choice for a processor today. It is important to realize that SPARC, which stand for Scaleable Processor ARChitecture, is an open source processor architecture that is overseen by the SPARC International Compatibility and Compliance Committee, not just a processor by SUN Microsystems. The term SPARC refers to an instruction set architecture (ISA) that was one of the first successful implementations of a RISC computing. Since SPARC is just architecture, it can be use in multiple chips for multiple uses at different price/performance issues.

In this paper, I hope to cover three main issues that are important features of the SPARC architecture which are the windowing features of the processor, processor traps, and the SPARC memory model. Also in this paper will be a quick history of the processor, and several diagrams that help to understand how the SPARC architecture works.
Quick History

The SPARC architecture is based on RISC I and II designs that were created at the University of Berkeley in the early 1980’s. The first SPARC processor appeared in 1987 in a SUN Microsystems’ Sun-4 computer. After several years, the SPARC International organization was setup to help share technical data and to deal with trademark and licensing issues. Since that time, Sun and other companies have released a steady stream of processors that implement the SPARC architecture, including workstations, servers, and a range of other embedded systems
.
Windowing

The SPARC architecture contains an interesting feature known as windowing, which implements “register window” architecture. Based on engineering projects at the University of California at Berkeley in the early 1980’s, windowing allows for simple, fast compliers and a reduced number of RISC instructions. Register windowing in a technique which allows only a small amount of the total system registers to be visible to software at one time. A virtual window will “slide” up and down the register stack to show another group of registers, so only part of the registers are visible at one time. The advantage is that more registers can be accessed with out having to empty the original ones.

In a typical SPARC based processor, there are two types of registers, the general purpose registers, and the control/status registers. The Instruction Unit (IU), the Floating Point Unit (FPU), and the Coprocessor (CP) all have their own set of control/status registers. The IU’s general purpose registers are known as the r registers.

The IU, depending on the implementation of the processor may contain anywhere from 40 to 520 general purpose registers, which are partitioned into 8 global registers and an implementation dependent number of registers that make up a set. A typical set is 16-registers, which are divided into 8 in registers and 8 local registers. A complete window is made of 1 set (8 in and 8 local registers) along with the 8 in registers of the next set. The 8 registers that are part of the next register set are known as out registers of the current window.

Each window shares the ins and outs register with the N-1 window and the N+1 window, and keeps 8 local registers that are particular to each window. So, window 0, registers 0-7 would be the in registers, 8-15 would be the local register, and 16-23 would be the out registers for window 0. The same registers 16-23 would also be the in registers for window 1. When referring to registers t, where t is a register 8 >= 15 and <=24 then t + 16 is in the next window.

For any particular implementation, there can be anywhere from 2 to 32 different windows, which defined, means that there are 8 global registers, and the number of sets multiplied by the 16 registers in a set. Therefore, if there are 32 sets, there are 520 different registers. For a clearer understanding of the model, examine figure 1 and figure 2.

For the system to keep track of the current window, there is a 5 bit field called the current window pointed (CWP), which is part of the processor status register (PSR). User applications cannot control the window, or movement of the window, but supervisor access by the system can increment the window location by the RESTORE instruction or decrement it by the SAVE instruction, or the window can be moved by a trap. Overflow of the window is controlled by the Window Invalid Mask control register
.

The advantages to this technique are hard to see at first, but they are part of a scheme to implement a RISC machine. With a typical processor, when a program is running, and fills up the physical registers, the data in the registers have to be pushed/popped onto a stack. In the SPARC architecture, a fresh set of physical registers are just rotated, and made available for the program to use. Some of the physical registers are shared between the windows, so that data can still be accessed. Although this technique is a little more effort on the part of the programmer, it can result in significant speed increases.

Although this idea seems great at first, there are a few disadvantages to windowing. First is that in large programs, where there is much recursion, the limited amount of physical registers fill up and you are back to the traditional push/pop stack usage, along with additional overhead of managing the windows and handling window overflow exceptions. Since it is hard to predict when the registers will overflow, performance analysis can be difficult. Also, hardware engineering becomes more difficult to implement the large amount of physical registers and multiplexers
.
SPARC Traps

In the SPARC architecture, there is a built in procedure for handling instruction-induced exceptions, or for handling unexpected external interrupt requests which is known as a trap. A trap is defined as a “vectored transfer of control to the supervisor through a special trap table that contains the first 4 instructions of each trap handler.” In the SPARC architecture, there are two modes of operation, the user mode and the supervisor mode. The supervisor mode handles the traps. If both an instruction-induced exception and interrupt trap occur, the IU selects the trap with the highest priority and handles the trap effectively.

When a trap is encountered, the CWP is decreased to point to the next window and the hardware writes trap information to the new window. The local registers in the new window are used to store the information. The program counters are stored in two of the local registers and the value PSR is also stored in a local register. The other 5 local registers are available for use by the supervisor program.

Traps can be categorized into three main categories: a precise trap, a deferred trap, or an interrupting trap. A precise trap is caused by one microcode instruction and is “caught” before any program-visible state has changed. When a precise trap occurs, three settings have to be met. The PC of the first local register stores the location of the instruction that causes the trap and the second local register stores the location of the instruction to be executed next. Also, the instruction that was executed before the one that caused the trap has to finish executing. Finally, the instruction that follows the trapped instruction won’t be executed until the trap is handled.

A deferred trap is similar to a precise trap except that the trap can arise several instructions after the instruction that causes the trap has occurred. A deferred trap can occur after the program-visible state has changed, which means information on the trap is visible to the user. The deferral of a trap cannot be deferred pass the execution of an instruction that may cause additional traps, such as instructions that specify source/destination registers, condition codes, or any program visible states. Also, a deferred trap cannot be deferred pass a precise trap, except in the floating point processor. In order for a deferred trap to occur, three conditions must be met: the instruction that causes the trap must be handled as a trap, the instruction stream must be able to continue to execute, and the supervisor instructions must be able to access information on the deferred trap, and continue executing the instruction stream. The decision to handle deferred traps is implementation dependent.

The last type of trap is an interrupting trap. An interrupting trap maybe caused by one of the following conditions: an external interrupt request, a generic exception not caused by a previous instruction, or a trap caused by a previously executed instruction. The primary purpose of interrupting traps is to handle exceptions that occur by previously executed instructions. An example is an exception that occurs when an I/O is finished.

The precise way that traps are handled can be varied from one implementation to another implementation, but the SPARC architecture model states that all implementations have a default trap model. The default model states that all traps must be precise traps, with 4 exceptions. Floating point and coprocessor exceptions can be deferred. Deferred or interrupting traps are implementation dependant. An interrupting trap may occur of there is a “non-resumable machine check” exception, that is if there is an hardware error. Any exceptions that are not a result of an instruction are interrupting.

Trap identification is handled by a trap table. The trap table stores a unique identifier of the occurred traps. After the trap data is stored, the supervisor program can then access the trap table and handle the trap effectively. The trap table allows for 256 different types of traps. Half of the table is reserved for hardware traps and half is reserved for software traps. Each particular trap has a trap table assigned address. Different implementations can define additional traps then are specified in the default model.
Memory Model

The SPARC memory model is the specifications of how data should be loaded and stored into memory. The model is defined as how it should appear to software, so the hardware implementation is vendor specific. The memory model of the SPARC is known as Total Store Ordering, which is required for implementation. Another model, called Partial Store Ordering also exists, which allows for faster performance. Both models work the same between single or multiple processor models.

Total Store Ordering is a particular procss where the store, flush, and atomic load-store instructions all happen in order. This order is known as the memory order. Each processor will issue their own memory order and will place the operations on a store buffer. The store buffer is emptied first in first out (FIFO), therefore the memory executes the operations for each processor as they are received. A load operation, when issued by the CPU, first checks to see if the value is in the store buffer. If the load isn’t in the buffer, then load reaches to memory to get the value. A processor cannot issue more instructions while the load is retrieving data. An atomic load-store will always go to memory to retrieve a value, and locks the processor until the value is retrieved.

In Partial Store Ordering, there is the same memory order, but not all the operations occur in a row, although they appear that way to the processor. PSO examines the instructions that are given and if two or more instructions request the same address, it only has to be retrieved once. As in TSO, PSO instructions are placed into a store buffer, but unlike TSO, instructions do not have to be executed in FIFO manner. The advantages of PSO is that it allows the implementation to have a more advanced, higher-performance memory system.

Memory is stored in bytes, with a choice of half-word access, on 2 byte boundaries, word access with 4 byte boundaries, or doubleword access on 8-byte boundaries. A processor accesses memory through it’s port. The order in which the operations are issued is known as the issuing order, and are stored in the store buffer until executed. Each processor has it’s own port, with it’s own store buffer. A port allows the processor to issue commands to memory. A switch connects each port to main memory, one at a time. Each port has nondeterministic access to main memory based on the memory order of operations. Figure 3 is an example of the memory model.
Conclusion

Overall, the SPARC provides some very advanced processor techniques that have proved to be reliable and offer significant performance versus cost comparison. The SPARC architecture offers a complete RISC implementation with a notable registering handling ability. Although there is are a few shortcomings with the processor, the software that runs on top of the processor more then makes up for the abilities of the processor, and allows the SPARC to have an advantage over other processors.

Figures and Tables
[image: image1.emf]

Figure 1 Three Overlapping Windows and 8 Global Registers

[image: image2.emf]

Figure 2 The windowed r registers.

[image: image3.emf]

Figure 3 SPARC Memory Model

Bibliography
� “SPARC International, Inc – History” URL:http://www.sparc.org/history.html

� “SPARC Architecture Manual Version 8.” SPARC International, Inc. Copyright 1992. URL: http://www.sparc.org/standards/v8.pdf

� Turley, Jim. “64-Bit CPUs: Alpha, SPARC, MIPS, and Power” URL: http://www.eweek.com/article2/0,3959,170169,00.asp

PAGE
- 11 -

