

Underlying Technologies

©The McGraw-Hill Companies, Inc., 2000

1

CONTENTS

- LANS
- POINT-TO-POINT WANS
- SWITCHED WANS
- CONNECTING DEVICES

Internet model

Ethernet layers

OSI Model	Ethernet
Data link lavor	Logical Link Control (LLC)
Data IIIK layer	Media Access Control (MAC)
Physical layer	Physical layer
	Transmission medium

Ethernet frame

Preamble56 bits of alternating 1s and 0s.SFDStart field delimiter, flag (1010101)

Preamble	SFD	Destination address	Source address	Length PDU	Data and padding	CRC
7 bytes	1 byte	6 bytes	6 bytes	2 bytes		4 bytes

Ethernet implementation

Fast Ethernet implementation

Either

- 1) Increase size of minimum frame, or
- 2) Decrease link's length.

Gigabit Ethernet implementation

2) Token Ring

a. Station A captures the token

©The McGraw-Hill Companies, Inc., 2000

d. Station A releases the token

Token Ring Data frame

SD	Start delimiter (flag)) End	delimit	er (flag)
AC	Access control (priority)				FS	Fran	Frame status		
FC Frame control (frame type)									
GT		FC	Destination	Source	Dete		CDC	ED	FC

50	AC	гС	address	address	Data	CRU	ЕD	гэ
1 byte	1 byte	1 byte	6 bytes	6 bytes	Up to 4500 bytes	4 bytes	1 byte	1 byte

Token Ring Implementation

Multistation access unit MAU

3) Wireless LAN Spread spectrum techniques

Wireless LAN Architecture 1) Basic Service Set

Wireless LAN Architecture 1) Extended Service Set

Physical Layer Technologies

- 1. V.90 (56K) Modem
- 2. Digital Subscriber Line (DSL and its flavors)
- 3. Cable Modem
- 4. T-Lines:
 - T-1: 1.544 Mbps (eq. 24 voice channels)
 - T-3: 44.736 Mbps (eq. 28 T-1 = 672 voice channels)
- 5. SONET
 - OC-*n*: $n \in \{1,3,9,12,18,24,36,48,96,192\}$
 - 51.840 Mbps 9953.280 Mbps.

Frame Relay network

Asynchronous Transfer Mode (Cell Relay) Networks

A cell network uses the cell as the basic unit of data exchange. A cell is defined as a small, fixed-sized (53-byte) block of information.

Objectives

- 1. Optimize use of high-data-rate transmission media
- 2. Interface with existing packet-switching (e.g. IP) networks
- 3. Connection-Oriented: reliable, predictable delivery

Asynchronous Time-Division Multiplexing

Architecture of an ATM network

Virtual Connections

Note that a virtual connection is defined by a pair of numbers: the VPI and the VCI.

An ATM cell

ATM layers

The IP protocol uses the AAL5 sublayer.

©The McGraw-Hill Companies, Inc., 2000

ATM LAN architecture

ATM LAN architecture

ATM LAN architecture

LAN Emulation (LANE)

- Connectionless vs. Connection-oriented
- Physical addresses vs. Virtual Connection IDs
- Multicasting and Broadcasting Delivery
- Interoperability

A mixed architecture ATM LAN using LANE

5 Types of Connecting devices

Repeater

Hubs Multi-Port Repeaters

©The McGraw-Hill Companies, Inc., 2000

A bridge has a table used in filtering decisions, may have several interfaces.

Routing example

A router is a three-layer (physical, data link, and network) device.

