
1
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 200311

Chapter 12

Transmission Control Protocol
(TCP) – Part One

2
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 200322

CONTENTS

Part Two

8. Congestion Control
9. Segment
10. Options
11. Checksum
12. Connection
13. State Transition Diagram
14. TCP Oeration
15. TCP Package

Part Two

1. Process-to-process
Communication

2. TCP Services
3. Numbering Bytes
4. Flow Control
5. Silly Window Syndrome
6. Error Control
7. TCP Timers

3
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 200333

Position of TCP in TCP/IP protocol suite

TCP Provides:

Process-to-Process
Communication using
Ports
Flow Control using a
sliding window
Error control using Acks,
T-out, ReTrans.
Stream Transportation
using Connections.

4
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 200344

12.1 Process To Process Communication

5
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 200355

12.2 TCP Services

1. Stream Delivery Service
Sending and Receiving Buffers
Segments

2. Full-Duplex Service:
Data can flow in both directions simultaneously

3. Connection-Oriented Service
Open Connection
Exchange Data
Close Connection

4. Reliable Service

6
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 200366

Stream delivery

Imaginary
Tube

Use of Buffers
- Speed disparity
- Flow Control
- Error Control

One sending + one
receiving buffer for
each direction

7
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 200377

TCP segments

1000’s of bytes are grouped into a TCP segment with a header to be
encapsulated into an IP packet.
Segments

need not be of same size
may arrive out of order, be corrupted, or even get lost altogether.

8
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 200388

12.3 Numbering Bytes

The bytes (not segments) of data being transferred in each
connection are numbered by TCP.

Numbering is independent in each direction

The numbering starts with a randomly generated 32-bit number (not
necessarily 0).

Each segment header has a sequence number field whose value
defines the number of the first data byte contained in that segment.

Each segment header has an acknowledgment number field whose
value, if valid, defines the number of the next byte a party expects to
receive. The acknowledgment number is cumulative.

9
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 200399

Example 1Example 1

Imagine a TCP connection is transferring a file of 6000 bytes. The
first byte is numbered 10010.
What are the sequence numbers for each segment if data is sent in
five segments with the first four segments carrying 1,000 bytes and
the last segment carrying 2,000 bytes?

Solution

The following shows the sequence number for each segment:

Segment 1 10,010 (10,010 to 11,009)
Segment 2 11,010 (11,010 to 12,009)
Segment 3 12,010 (12,010 to 13,009)
Segment 4 13,010 (13,010 to 14,009)
Segment 5 14,010 (14,010 to 16,009)

10
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20031010

12.4 Flow Control

How many bytes could be sent before waiting for an
acknowledgement?

A sliding window (for each connection) is imposed on the sending
buffer to make transmission more efficient as well as to control the
flow of data so that the destination does not become overwhelmed.

A TCP’s sliding window is byte oriented.

11
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20031111

TCP Buffers

Sender buffer.
Could overflow
Receiver

Receiver Window
= #of vacant buffers
= 7

Sender window
≤ Receiver Window
= 7 bytes.
Yet 4 could be sent.

12
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20031212

Sliding the sender window

Bytes 203 & 204 are sent
Receivers Acks expecting byte 203 (typo in textbook) next, with its window
size still 7

Sender slides its window 3 position to the left

13
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20031313

Expanding the sender window

Expanding (Faster Consumption by Receiver)
Receiver Acks two more bytes and increases window size to 10 (Why?)
Sender expands its window and sends 5 more bytes, 4 more bytes arrive
from Sending application

14
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20031414

Shrinking the sender window

Shrinking (Slower Consumption by Receiver)
Receiver Acks five more bytes, yet only one byte consumed, so it
decreases window size to 6 (=10-5+1)
Sender slides its window five positions to the left, shrinks its size to
6 and sends 2 more bytes. 3 bytes arrive from sending application

15
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20031515

Remarks on the Sliding Window Protocol

In TCP, the sender window size is totally controlled by the receiver
window value. However, the actual window size can be smaller if
there is congestion in the network.

The Sender Window may be entirely closed (How? Why?) thus
prohibiting any future transmission until further notice (How?).

The source does not have to send a full window’s worth of data.
The destination can send an acknowledgment at any time.
The Silly Window Syndrome could materialize.

16
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20031616

12.5 Silly Window Syndrome

What is it?
Only ONE byte of data is sent inside each TCP segment
A 41-byte IP packet (1 data + 20 TCP header + 20 IP header)
carries one byte

How does it occur?
1. By Sender: Application program is terribly slow; sends one byte

at-a-time
Remedy? Nagle’s algorithm:
Send first segment, even if only one byte of data
Subsequent segments are sent only when either

Previous segment is acknowledged (a fast network)
A Maximum-size (What is it?) segment worth of data has
arrived from sending application (slow network)

17
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20031717

Silly Window Syndrome “Continued”

How does it occur?
2. By Receiver: Application program is terribly slow; consumes

one byte at-a-time. Eventually receiving buffer fills up.
Remedies?
a) Clark’s Solution: Ack ASAP with window size=0 until

i) Half the buffer frees up
ii) Enough space for a maximum-size (what is it?)

segment frees up.
b) Delayed Acknowledgement: Delay Ack until a decent

amount of buffer frees up, but before, say, 500ms.
- Reduce ACKs
- Reduce retransmissions by sender

18
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20031818

12.6 Error Control

Deliver the data stream reliably:
All segments in order
No lost segments
No corrupted segments
No duplicated segments

Error control provides this level of reliability by detecting and
correcting the above errors.

Error Detection – using:
Checksums: detect corrupted segments
Acknowledgements: Confirm receipt of sound segments. No NACKs.
Timers: retransmit unacknowledged (due to loss or corruption) segments

19
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20031919

Corrupted segment

20
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20032020

Lost segment

21
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20032121

Lost acknowledgment

22
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20032222

Duplication & Out-of-Order Arrival

Duplication:
Detected by receiving a segment with a previously received
sequence number. Action? Discard segment.

Out-of-Order Segment:
Acknowledge a segment only if ALL preceding segments arrived
safely.
If sender times-out and send duplicates, discard these duplicates.

23
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20032323

12.7 TCP Timers

Detect Idle
clients

Connection
Termination

24
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20032424

12.7.1 Retransmission Timer

How long to wait for an ACK of a previously sent segment before
retransmission.
Depends on distance and network traffic density.

Retransmission time should be dynamic.
Retransmission time = 2 × RTT

Dynamic Calculation of RTT:
Use a timestamp TCP option (discussed later), or

a) Actually measure RTT of first two segments of a connection
b) RTTfuture estimate = α × RTTpast + (1 – α) × RTTcurrent

c) Typically, α = 0.90
d) Do NOT consider retransmitted segments into the above

calculation of RTT

25
©The McGraw-Hill Companies, Inc., 2000 © Adapted for use at JMU by Mohamed Aboutabl, 20032525

12.7.2 Persistence Timer

Sender receives an ACK with window size = 0
Sender Stops transmission
Receiver eventually has free buffer and sends an ACK with non-
zero window size. This ACK segment is lost.
Sender may wait forever. We have a deadlock

Solution: Each time a sender gets a 0-window segment, it starts a
persistence timer.

If timer goes off: probe the receiver to (re)update window size.
(What is a probe and how is it interpreted by receiver? 5 bonus
points for first two written responses with references)
If you get a non-zero window size from receiver cancel the
persistence timer.

	Transmission Control Protocol(TCP) – Part One
	CONTENTS
	Position of TCP in TCP/IP protocol suite
	12.1 Process To Process Communication
	12.4 Flow Control
	TCP Buffers
	Remarks on the Sliding Window Protocol
	12.5 Silly Window Syndrome
	Silly Window Syndrome “Continued”
	12.6 Error Control
	Duplication & Out-of-Order Arrival
	12.7 TCP Timers
	12.7.1 Retransmission Timer
	12.7.2 Persistence Timer

