Chapter 11

User Datagram Protocol (UDP)

©The McGraw-Hill Companies, Inc., 2000

1

CONTENTS

- PROCESS-TO-PROCESS COMMUNICATION
- USER DATAGRAM
- CHECKSUM
- UDP OPERATION
- USE OF UDP
- UDP PACKAGE

Position of UDP in the TCP/IP protocol suite

UDP Services

- Process-to-process communication using "Ports." *Fundamentally, this is the only thing it adds on top of IP.*
- Control:
 - No flow control or acknowledgment
 - Minimal error control: simply detect and drop.
- No Segmentation/Reassembly service. Incoming data must fit in a UDP packet.
- Connectionless & Unreliable transport.
- Minimal overhead, compared to TCP

11.1 PROCESS TO PROCESS COMMUNICATION

Client-Server Paradigm & Ports

- A *Client* process on a local host sends a request to a *Server* process on a remote host.
- Client process identification:
 - Local host IP
 - *Ephemeral port number* (0-65,535) randomly chosen by UDP
- Server process identification
 - Remote host IP
 - Well-known port number

6

Role of IP addresses vs. Port numbers

IANA Port Number Ranges

Port	Protocol	Description	
7	Echo	Echoes a received datagram back to sender	
13	Daytime	Returns the date and time	
111	RPC	Remote procedure call	
123	NTP	Network Time Protocol	
161	SNMP	Simple Network Management Protocol	

Max UDP Data length = 65535 - UDP Header (8) - Smallest IP header(20) = 65,507

11.3 Checksum

- Checksum covers three sections:
 - 1. Pseudoheader (which does not physically exist as part of the user datagram)
 - 2. UDP header
 - 3. Data coming from Application Layer whose length must be an even number of Bytes. Padding may be added to help compute the checksum, then eliminated be.

Pseudoheader added to the UDP datagram

ader	32-bit source IP address			
udohe	32-bit destination IP address			
Pse	All 0s	8-bit protocol (17)	16-bit UDP total length	
ader	Source port address 16 bits		Destination port address 16 bits	
He	UDP total length 16 bits		Checksum 16 bits	
Data			ita	
	(Padding must be added to make the data a multiple of 16 bits)			

Checksum calculation of a simple UDP user datagram

153.18.8.105			
171.2.14.10			
All 0s	17	15	
1087		13	
15		All 0s	
Т	Е	S	Т
Ι	N	G	All 0s

11.4 UDP Operation

• Its Connectionless:

 $\overline{\mathbf{\Omega}}$

- Independent user datagrams, even if from same source socket to same destination socket. No streaming is supported.
- Data must be small enough to fit in one user datagram.
- No flow or error control
 - If checksum fail, destination silently drops the datagram.
 - Source gets no idea whether the user datagram has arrived.

Encapsulation and decapsulation

Queues in UDP

Multiplexing and demultiplexing

11.5 Use of UDP

- Simple request-response communication (no bulk data)
- Processes with Internal flow and error-control mechanisms (e.g. Trivial FTP).
- Multicasting and Broadcasting
- Management processes (e.g. SNMP)
- Routing Information Protocol (RIP) for route updating.

11.6 **UDP** Package

 \mathcal{L}

Examples Control-block table at the beginning

State	Process ID	Port Number	Queue Number
IN-USE	2,345	52,010	34
IN-USE	3,422	52,011	
FREE	in the second second		
IN-USE	4,652	52,012	38
FREE			

The first activity is the arrival of a user

After a few seconds, a process starts. It asks

Modified table after Example 2

State	Process ID	Port Number	Queue Number
	174		
IN-USE	2,345	52,010	34
IN-USE	3,422	52,011	
IN-USE	4,978	52,014	The Contraction
IN-USE	4,652	52,012	38
FREE			

A user datagram now arrives for port 52,011.

Modified table after Example 3

State	Process ID	Port Number	Queue Number
	1000 000 000 000		
IN-USE	2,345	52,010	34
IN-USE	3,422	52,011	43
IN-USE	4,978	52,014	
IN-USE	4,652	52,012	38
FRFF			

Example 4

After a few seconds, a user datagram arrives for port 52,222. The input module checks the table and cannot find the entry for this destination. The user datagram is dropped and a request is made to ICMP to send an "unreachable port" message to the source.

After a few seconds, a process needs to send a user datagram. It delivers the data to the output module which adds the UDP header and sends it.