CS-461 Internetworking

Dr. Mohamed Aboutabl http://www.cs.jmu.edu/users/aboutams

Introduction

Protocols

- Set of rules governing communication between network elements (e.g. computers) defining:
 - 1. Syntax = What
 - 2. Semantics = How
 - 3. Timing = When (and how fast)

Standards

- Agree-upon rules enabling interoperability
- Thoroughly tested and adhered to.
- Established by Standard Organizations:
 - International Standards Organization (ISO)
 - International Telecommunications Union Telecommunication Standards Sector (ITU-T)
 - American National Standards Institute (ANSI)
 - Institute of Electrical and Electronics Engineers (IEEE)
 - Electronic Industries Association (EIA)

The OSI Model and TCP/IP Protocol Suite

- THE OSI MODEL
- LAYERS IN THE OSI MODEL
- TCP/IP PROTOCOL SUITE
- ADDRESSING
- TCP/IP VERSIONS

Open Systems Interconnection Model

• Layered framework for the design of network systems

 Never fully implemented \$\$ \$\$ \$\$

OSI layers

Figure 2-3

An exchange using the OSI model

- Physical media
- Bit representation (ie encoding)
- Transmission rate

- Bit synchronization
- Physical topology (star, ring, bus)
- Transmission mode (simplex, half-, full-duplex)

Data Link Layer

Hop-to-Hop Frame Delivery inside same network

- Framing (cut into *frames*)
- Physical addressing (source/destination)
- Flow control (speed up/slow down)

- Error control (detection, retransmission, duplication) via trailer T2
- Access control (to the link)

Network Layer

End-to-End Packet Delivery across networks

- Delivery of *Packets* (parts of a message). Does not recognize relationship between individual packets.
- Logical addressing (of source & destination)
- Routing across different networks

Transport Layer

End-to-End Message Delivery across networks

- Service-point Addressing: ports
- Segmentation & Reassembly: (message ↔ segments with seq#s), reordering.
- Error control (end-to-end): Duplicate/Lost/Damaged segments
- Flow Control (end-to-end)

Reliable end-to-end delivery of a message

©The McGraw-Hill Companies, Inc., 2000

• If needed by communicating processes, the session layer may offer its synchronization service to facilitate transmission of really large data.

Presentation Layer

- Translation: e.g. ASCII \leftrightarrow EBCDIC, Little Endian \leftrightarrow Big Endian.
- Encryption
- Compression: text, audio, video, images.

©The McGraw-Hill Companies, Inc., 2000

Application Layer

- Electronic Mail.
- File Transfer.
- Network Virtual Terminal.

Summary of layers

TCP/IP and OSI model

TCP/IP Layers

- Physical & Data Link Layers
 - Undefined by TCP/IP: any network; LAN, MAN, WAN, etc.
- Network (*actually Internetworking*) Layer
 - Internetworking Protocol: transports *datagrams*, each one is independent. Datagrams may travel different routs, arrive out of order, be duplicated, or get lost. IP is unreliable, connectionless
 - IP is Supported by:
 - 1. Address Resolution Protocol: IP \rightarrow Physical NIC address.
 - 2. Reverse ARP: Physical NIC address \rightarrow IP, when booting up.
 - 3. Internet Control Message Protocol: notify sender of problems.
 - 4. Internet Group Message Protocol: Multicast datagrams to a group.

TCP/IP Layers (Cont'd)

- Transport Layer: Deliver a *message* from a "sender" process to a "receiver" process. Defines two protocols:
 - 1. User Datagram Protocol: *The minimal service:*
 - connectionless process-to-process protocol
 - adds only port address, checksum, length information
 - 2. Transmission Control Protocol: *The full service*:
 - *Stream* (i.e. connection-oriented) transport: streams are cut into *segments* (with sequence number for reordering)
 - Segments are carried inside IP datagrams.
 - Reliable transportation:
 - checks for lost&duplicate segments,
 - in-order delivery.
- Application Layer:
 - = OSI (Session+Presentation + Application)
 - Various protocols.

Addresses in TCP/IP

