
Section 2.5 Integers and Algorithms 2.5.1

2.5 INTEGERS AND ALGORITHMS

We accelerate evaluation of gcd’s, of arithmetic
operations, and of monomials and polynomials.

POSITIONAL REPRESENTATION of INTEGERS

Although arithmetic algorithms are much more
complicated for numbers in positional notation
than for numbers in monadic notation, they pay
benefits in execution time.

(1) Addition algorithm execution time decreases
from O(n) to O(log n).

(2) Multiplication algorithm execution time de-
creases from O(nm) to O(log n log m).

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.



Chapter 2 ALGORITHMS and INTEGERS 2.5.2

Theorem 2.5.1. Let b > 1 and n ≥ 0 be in-
tegers. Let k be the maximum integer such that
bk ≤ n. Then there is a unique set of nonnega-
tive integers ak, ak−1, . . . , a0 < b such that

n = akbk + ak−1b
k−1 + · · ·+ a1b

1 + a0

Proof: Apply the division algorithm to n and
b to obtain a quotient and remainder a0. Then
apply the division algorithm to that quotient and
b to obtain a new quotient and remainder a1.
Etc. ♦

NUMBER BASE CONVERSION

The algorithm in the proof of Theorem 2.5.1
provides a method to convert any positive integer
from one base to another.

Example 2.5.1: Convert 121510 to base-7.
n d q r
1215 7 173 4
173 7 24 5
24 7 3 3
3 7 0 3

Solution: 33547

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.



Section 2.5 Integers and Algorithms 2.5.3

EVALUATION OF MONOMIALS

Example 2.5.2: Calculate 13n, e.g. 1319.

Usual method: 13× 13× 13× · · · × 13
time = Θ(n).

Better method:
13, 132, 134, 138, 1316 takes Θ(log n) steps
13× 132 × 1316 takes Θ(log n) steps

EVALUATION OF POLYNOMIALS

Evaluate f(x) = anxn + an−1x
n−1 + ... + a1x + a0

Usual method of evaluation takes Θ(n):
n multiplications to calculate n powers of x
n multplications by coefficients
n additions

Horner’s method (due to ):
anx + an−1

(anx + an−1)x + an−2 etc.

requires only n multiplications and n additions.

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.



Chapter 2 ALGORITHMS and INTEGERS 2.5.4

EUCLIDEAN ALGORITHM

Lemma 2.5.2. Let d\m and d\n. Then d\m−n
and d\m + n.

Proof: Suppose m = dp and n = dq. Then
m− n = d(p− q) and m + n = d(p + q). ♦

Corollary 2.5.3. gcd(m,n) = gcd(m− n, n).

Proof: In three steps.

A1. gcd(m,n) is a common div of m − n and n,
and gcd(m− n, n) is a common div of m and n.
Pf. Both parts by Lemma 1.

A2. gcd(m,n) ≤ gcd(m− n, n)
and gcd(m− n, n) ≤ gcd(m,n).
Pf. Both parts by A1 and def of gcd (“great-
est”).
A3. gcd(m,n) = gcd(m− n, n).
Pf. Immediate from A2. ♦ Cor 2.5.3

Cor 2.5.4. gcd(m,n) = gcd(n, m mod n).

Proof: The number m mod n is obtained from
m by subtracting a multiple of n. Iteratively
apply Cor 2.5.3. ♦

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.



Section 2.5 Integers and Algorithms 2.5.5

Algorithm 2.5.1: Euclidean Algorithm

Input: positive integers m ≥ 0, n > 0
Output: gcd(n, m)

If m = 0 then return(n)
else return gcd(m,n mod m)

Time-Complexity: O(log(min(n, m))).
Much better than Naive GCD algorithm.

Example 2.5.3: Euclidean Algorithm

gcd(210, 111) = gcd(111, 210 mod 111) =
gcd(111, 99) = gcd(99, 111 mod 99) =
gcd(99, 12) = gcd(12, 99 mod 12) =
gcd(12, 3) = gcd(3, 12 mod 3) =
gcd(3, 0) = 3

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.



Chapter 2 ALGORITHMS and INTEGERS 2.5.6

Example 2.5.4: Euclidean Algorithm

gcd(42, 26) = gcd(26, 42 mod 26) =
gcd(26, 16) = gcd(16, 26 mod 16) =
gcd(16, 10) = gcd(10, 16 mod 10) =
gcd(10, 6) = gcd(6, 10 mod 6) =
gcd(6, 4) = gcd(4, 6 mod 4) =
gcd(4, 2) = gcd(2, 4 mod 2) =
gcd(2, 0) = 2

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.


