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2.4 THE INTEGERS AND DIVISION

In mathematics, specifying an axiomatic model
for a system precedes all discussion of its proper-
ties. The number system serves as a foundation
for many other mathematical systems.

Elementary school students learn algorithms for
the arithmetic operations without ever seeing
a definition of a “number” or of the operations
that these algorithms are modeling.

These coursenotes precede discussion of division
by the construction of the number system and of
the usual arithmetic operations.
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AXIOMS for the NATURAL NUMBERS

def: The natural numbers are a mathematical
system

N = {N, 0 ∈ N, s : N → N}
in which the number 0 is called zero, and the
operation s : N → N is called successor, such
that

(1) (6 ∃n)[0 = s(n)]. Zero is not the successor of
any number.

(2) (∀m,n ∈ N)[m 6= n ⇒ s(m) 6= s(n)]. Two dif-
ferent numbers cannot have the same successor.

(3) (∀S ⊆ N)
[
(0 ∈ S) ∧ (∀n ∈ S)[s(n) ∈ S] ⇒ S = N

]
.

Given a subset S of the natural numbers, sup-
pose that it contains the number 0, and suppose
that whenever it contains a number, it also con-
tains the successor of that number. Then S = N.

Remark: Axiom (1) ⇒ N has at least one other
number, namely, the successor of zero. Let’s call
it one. Using Axioms (1) and (2) together, we
conclude that s(1) 6∈ {0, 1}. Etc.

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.



Section 2.4 The Integers and Division 2.4.3

ARITHMETIC OPERATIONS

def: The predecessor of a natural number n is
a number m such that s(m) = n.
notation: p(n).

def: Addition of natural numbers.

n + m =
{

n if m = 0
s(n) + p(m) otherwise

def: Ordering of natural numbers.

n ≥ m means
{

m = 0 or
p(n) ≥ p(m)

def: Multiplication of natural numbers.

n×m =
{

0 if m = 0
n + n× p(m) otherwise

OPTIONAL: (1) Define exponentiation. (2)
Define positional representation of numbers.
(3) Verify that the usual base-ten methods for
addition, subtraction, etc. produce correct an-
swers.
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DIVISION

def: Let n and d be integers with d 6= 0. Then
d divides n if there exists a number q such that
n = dq. notation: d\n.

def: The integer d is a factor of n or a divisor
of n if d\n.

def: A divisor d of n is proper if d 6= n.

def: The number one is called a trivial divisor.

def: An integer p ≥ 2 is prime if p has no non-
trivial proper divisors, and composite other-
wise.

Algorithm 2.4.1: Naive Primality Algorithm

Input: positive integer n
Output: smallest nontrivial divisor of n

For d := 2 to n
If d\n then exit
Continue with next iteration of for-loop.

Return (d)

Time-Complexity: O(n).
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Theorem 2.4.1. Let n be a composite number.
Then n has a divisor d such that 1 < d ≤

√
n.

Proof: Straightforward. ♦

Algorithm 2.4.2: Less Naive Primality Algorithm

Input: positive integer n
Output: smallest nontrivial divisor of n

For d := 2 to
√

n
If d\n then exit
Continue with next iteration of for-loop.

Return (d)

Time-Complexity: O(
√

n).

Example 2.4.1: Primality Test 731.

Upper Limit: b
√

731c = 27, since 729 = 272.

¬(2\731): leaves 3, 5, 7, 9, 11, . . . , 25, 27 13 cases

¬(3, 5, 7, 9, 11, 13, 15\731): however, 17\731

AHA: 731 = 17× 43.

N.B. To accelerate testing, divide only by primes
2, 3, 5, 7 ,11, 13, 17.
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MERSENNE PRIMES

Prop 2.4.2. If m,n > 1 then 2mn − 1 is not
prime.

Proof: 2m(n−1) + · · · +2m +1
(times) × 2m −1

2mn +2m(n−1) + · · · +2m

−2m(n−1) − · · · −2m −1
2mn −1

Example 2.4.2:

26 − 1 = 23·2 − 1

= (23·1 + 1)(23 − 1) = 9 · 7 = 63

= 22·3 − 1

= (22·2 + 22·1 + 1)(22 − 1) = 21 · 3 = 63

Mersenne studied the CONVERSE of Prop 2.4.2:
Is 2p − 1 prime when p is prime?
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def: A Mersenne prime is a prime number of
the form 2p − 1, where p is prime.

Example 2.4.3: primality of 2p − 1
prime p 2p − 1 Mersenne?
2 22 − 1 = 3 yes (1)
3 23 − 1 = 7 yes (2)
5 25 − 1 = 31 yes (3)
7 27 − 1 = 127 yes (4)
11 211 − 1 = 2047 = 23 · 89 no
11213 211213 − 1 yes (23)
19937 219937 − 1 yes (24)
3021377 23021377 − 1 yes (37) [late 1998]

Fundamental Theorem of Arithmetic

Theorem 2.4.3. Every positive integer can be
written uniquely as the product of nondecreasing
primes.

Proof: §2.5 proves this difficult lemma:
if a prime number p divides a product mn of
integers, then it must divide either m or n. ♦

Example 2.4.4: 720 = 243251 is written as a
prime power factorization.
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DIVISION THEOREM

Theorem 2.4.4. Let n and d be positive inte-
gers. Then there are unique nonnegative integers
q and r < d such that n = qd + r.

terminology: n = dividend, d =divisor,
q = quotient, and r = remainder.

Algorithm 2.4.3: Division Algorithm

Input: dividend n > 0 and divisor d > 0
Output: quotient q and remainder 0 ≤ r < d

q := 0
While n ≥ d

q := q + 1
n := n− d
Continue with next iteration of while-loop.

Return (quotient: d; remainder: n)

Time-Complexity: O(n/d).

Remark: Positional representation uses only
Θ(log n) digits to represent a number. This facil-
itates a faster algorithm to calculate division.
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Example 2.4.5: divide 7 into 19
n d q
19 7 0
12 7 1
5 7 2

GREATEST COMMON DIVISORS

def: The greatest common divisor of two in-
tegers m,n, not both zero, is the largest positive
integer d that divides both of them.
notation: gcd(m,n).

Algorithm 2.4.4: Naive GCD Algorithm

Input: integers m ≤ n not both zero
Output: gcd(m,n)

g := 1
For d := 1 to m

If d\m and d\n then g:=d
Continue with next iteration of for-loop.

Return (g)

Time-Complexity: Ω(m).
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Algorithm 2.4.5: Primepower GCD Algorithm

Input: integers m ≤ n not both zero
Output: gcd(m,n)

(1) Factor m = pa1
1 pa2

2 · · · par
r into prime powers.

(2) Factor n = pb1
1 pb2

2 · · · pbr
r into prime powers.

(3) g := p
min(a1,b1)
1 p

min(a2,b2)
2 · · · pmin(ar,br)

r

Return (g)

Time-Complexity:
depends on time needed for factoring

def: The least common multiple of two posi-
tive integers m,n is the smallest positive integer
d divisible by both m and n.
notation: lcm(m,n).

Theorem 2.4.5. Let m and n be positive inte-
gers. Then mn = gcd(m,n)lcm(m,n).

Proof: The Primepower LCM Algorithm uses
max instead of min. ♦
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RELATIVE PRIMALITY

def: Two integers m and n, not both zero, are
relatively prime if gcd(m,n) = 1.
notation: m ⊥ n.

Proposition 2.4.6. Two numbers are relatively
prime if no prime have positive exponent in both
their prime power factorizations.

Proof: Immediate from the definition above. ♦

Remark: Proposition 2.4.6 is what motivates
the notation m ⊥ n. Envision the integer n ex-
pressed as a tuple in which the kth entry is the
exponent (possibly zero) of the kth prime in the
prime power factorization of n. The dot prod-
uct of two such representations is zero iff the
numbers represented are relatively prime. This
is analogous to orthogonality of vectors.
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MODULAR ARITHMETIC

def: Let n and m > 0 be integers. The residue
of dividing n by m is, if n ≥ 0, the remainder,
or otherwise, the smallest nonnegative number
obtainable by adding an integral multiple of m.

def: Let n and m > 0 be integers. Then
n mod m is the residue of dividing n by m.

Prop 2.4.7. Let n and m > 0 be integers. Then
n− (n mod m) is a multiple of m.

Example 2.4.6: 19 mod 7 = 5; 17 mod 5 = 2;
−17 mod 5 = −3.

def: Let b, c, and m > 0 be integers. Then b is
congruent to c modulo m if m divides b − c.
notation: b ≡ c mod m.

Theorem 2.4.8. Let a, b, c, d, m > 0 be inte-
gers such that a ≡ b mod m and c ≡ d mod m.
Then

a + c ≡ b + d mod m and ac ≡ bd mod m.

Proof: Straightforward. ♦
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CAESAR ENCRYPTION

def: Monographic substitution is enciphering
based on a permutation of an alphabet π : A →
A. Then ciphertest is obtained from plaintext
by replacing each occurrence of each letter by its
substitute.
letter A B C D E F · · · X Y Z
subst Q W E R T Y · · · B N M

def: A monographic substitution cipher is called
cyclic if the letters of the alphabet are repre-
sented by numbers 0, 1, ..., 25 and there is a
number m such that π(n) = m + n mod 26.

An ancient Roman parchment is discovered with
the following words:

HW WX EUXWH

What can it possibly mean?

Hint: Julius Caesar encrypted military messages
by cyclic monographic substitution.
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