2.4 THE INTEGERS AND DIVISION

In mathematics, specifying an axiomatic model for a system precedes all discussion of its properties. The number system serves as a foundation for many other mathematical systems.

Elementary school students learn algorithms for the arithmetic operations without ever seeing a definition of a "number" or of the operations that these algorithms are modeling.

These coursenotes precede discussion of division by the construction of the number system and of the usual arithmetic operations.

AXIOMS for the NATURAL NUMBERS

DEF: The natural numbers are a mathematical system

$$
\mathcal{N}=\{\mathbf{N}, 0 \in \mathbf{N}, s: \mathbf{N} \rightarrow \mathbf{N}\}
$$

in which the number 0 is called zero, and the operation $s: \mathbf{N} \rightarrow \mathbf{N}$ is called successor, such that
(1) $(\nexists n)[0=s(n)]$. Zero is not the successor of any number.
(2) $(\forall m, n \in \mathbf{N})[m \neq n \Rightarrow s(m) \neq s(n)]$. Two different numbers cannot have the same successor.
(3) $(\forall S \subseteq \mathbf{N})[(0 \in S) \wedge(\forall n \in S)[s(n) \in S] \Rightarrow S=\mathbf{N}]$.

Given a subset S of the natural numbers, suppose that it contains the number 0 , and suppose that whenever it contains a number, it also contains the successor of that number. Then $S=\mathbf{N}$.

Remark: Axiom (1) $\Rightarrow \mathbf{N}$ has at least one other number, namely, the successor of zero. Let's call it one. Using Axioms (1) and (2) together, we conclude that $s(1) \notin\{0,1\}$. Etc.

ARITHMETIC OPERATIONS

DEF: The predecessor of a natural number n is a number m such that $s(m)=n$. NOTATION: $p(n)$.

DEF: Addition of natural numbers.
$n+m= \begin{cases}n & \text { if } m=0 \\ s(n)+p(m) & \text { otherwise }\end{cases}$
DEF: Ordering of natural numbers.
$n \geq m$ means $\left\{\begin{array}{l}m=0 \quad \text { or } \\ p(n) \geq p(m)\end{array}\right.$
DEF: Multiplication of natural numbers.
$n \times m= \begin{cases}0 & \text { if } m=0 \\ n+n \times p(m) & \text { otherwise }\end{cases}$
OPTIONAL: (1) Define exponentiation. (2) Define positional representation of numbers. (3) Verify that the usual base-ten methods for addition, subtraction, etc. produce correct answers.

DIVISION

DEF: Let n and d be integers with $d \neq 0$. Then d divides n if there exists a number q such that $n=d q$. NOTATION: $d \backslash n$.

DEF: The integer d is a factor of n or a divisor of n if $d \backslash n$.

DEF: A divisor d of n is proper if $d \neq n$.
DEF: The number one is called a trivial divisor.
DEF: An integer $p \geq 2$ is prime if p has no nontrivial proper divisors, and composite otherwise.

Algorithm 2.4.1: Naive Primality Algorithm

Input: positive integer n
Output: smallest nontrivial divisor of n
For $d:=2$ to n
If $d \backslash n$ then exit
Continue with next iteration of for-loop.
Return (d)

Time-Complexity: $\mathcal{O}(n)$.

Theorem 2.4.1. Let n be a composite number. Then n has a divisor d such that $1<d \leq \sqrt{n}$.
Proof: Straightforward.

Algorithm 2.4.2: Less Naive Primality Algorithm

Input: positive integer n
Output: smallest nontrivial divisor of n
For $d:=2$ to \sqrt{n}
If $d \backslash n$ then exit
Continue with next iteration of for-loop.
Return (d)

Time-Complexity: $\mathcal{O}(\sqrt{n})$.

Example 2.4.1: Primality Test 731.
Upper Limit: $\lfloor\sqrt{731}\rfloor=27$, since $729=27^{2}$.
$\neg(2 \backslash 731)$: leaves $3,5,7,9,11, \ldots, 25,27 \quad 13$ cases
$\neg(3,5,7,9,11,13,15 \backslash 731)$: however, $17 \backslash 731$
АНА: $731=17 \times 43$.
N.B. To accelerate testing, divide only by primes $2,3,5,7,11,13,17$.

MERSENNE PRIMES

Prop 2.4.2. If $m, n>1$ then $2^{m n}-1$ is not prime.

Proof:	$2^{m(n-1)}$	$+\cdots$	$+2^{m}$	+1
(times)		\times	2^{m}	-1
$2^{m n}$	$+2^{m(n-1)}$	$+\cdots$	$+2^{m}$	
	$-2^{m(n-1)}$	$-\cdots$	-2^{m}	-1
$2^{m n}$				-1

Example 2.4.2:

$$
\begin{aligned}
2^{6}-1 & =2^{3 \cdot 2}-1 \\
& =\left(2^{3 \cdot 1}+1\right)\left(2^{3}-1\right)=9 \cdot 7=63 \\
& =2^{2 \cdot 3}-1 \\
& =\left(2^{2 \cdot 2}+2^{2 \cdot 1}+1\right)\left(2^{2}-1\right)=21 \cdot 3=63
\end{aligned}
$$

Mersenne studied the CONVERSE of Prop 2.4.2: Is $2^{p}-1$ prime when p is prime?

DEF: A Mersenne prime is a prime number of the form $2^{p}-1$, where p is prime.

Example 2.4.3: primality of $2^{p}-1$ prime $p \quad 2^{p}-1$
$2 \quad 2^{2}-1=3$
Mersenne?
$3 \quad 2^{3}-1=7$
$5 \quad 2^{5}-1=31$
$7 \quad 2^{7}-1=127$
11
$2^{11}-1=2047=23 \cdot 89$
yes (1)
yes (2)
yes (3)
yes (4)
$11 \quad 2^{1-1}-2047=23 \cdot 89 \quad$ no
$11213 \quad 2^{11213}-1$
yes (23)
$19937 \quad 2^{19937}-1$
yes (24)
$3021377 \quad 2^{3021377}-1 \quad$ yes (37) [late 1998]

Fundamental Theorem of Arithmetic

Theorem 2.4.3. Every positive integer can be written uniquely as the product of nondecreasing primes.
Proof: $\S 2.5$ proves this difficult lemma: if a prime number p divides a product $m n$ of integers, then it must divide either m or n.

Example 2.4.4: $\quad 720=2^{4} 3^{2} 5^{1}$ is written as a prime power factorization.

DIVISION THEOREM

Theorem 2.4.4. Let n and d be positive integers. Then there are unique nonnegative integers q and $r<d$ such that $n=q d+r$.

TERMINOLOGY: $n=$ dividend, $d=$ divisor, $q=$ quotient, and $r=$ remainder.

Algorithm 2.4.3: Division Algorithm

Input: dividend $n>0$ and divisor $d>0$
Output: quotient q and remainder $0 \leq r<d$ $q:=0$
While $n \geq d$
$q:=q+1$
$n:=n-d$
Continue with next iteration of while-loop.
Return (quotient: d; remainder: n)

Time-Complexity: $\mathcal{O}(n / d)$.

Remark: Positional representation uses only $\Theta(\log n)$ digits to represent a number. This facilitates a faster algorithm to calculate division.

Example 2.4.5:			
n	divide 7 into 19		
19	7	q	
12	7	0	
5	7	2	

GREATEST COMMON DIVISORS

DEF: The greatest common divisor of two integers m, n, not both zero, is the largest positive integer d that divides both of them.
notation: $\operatorname{gcd}(m, n)$.

```
    Algorithm 2.4.4: Naive GCD Algorithm
Input: integers \(m \leq n\) not both zero
Output: \(\operatorname{gcd}(m, n)\)
\(g:=1\)
For \(d:=1\) to \(m\)
    If \(d \backslash m\) and \(d \backslash n\) then \(\mathbf{g}\) :=d
    Continue with next iteration of for-loop.
Return (g)
```

[^0]
Algorithm 2.4.5: Primepower GCD Algorithm

Input: integers $m \leq n$ not both zero
Output: $\operatorname{gcd}(m, n)$
(1) Factor $m=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ into prime powers.
(2) Factor $n=p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{r}^{b_{r}}$ into prime powers.
(3) $g:=p_{1}^{\min \left(a_{1}, b_{1}\right)} p_{2}^{\min \left(a_{2}, b_{2}\right)} \cdots p_{r}^{\min \left(a_{r}, b_{r}\right)}$

Return (g)

Time-Complexity:
 depends on time needed for factoring

DEF: The least common multiple of two positive integers m, n is the smallest positive integer d divisible by both m and n.
NOTATION: $\operatorname{lcm}(m, n)$.
Theorem 2.4.5. Let m and n be positive integers. Then $m n=\operatorname{gcd}(m, n) \operatorname{lcm}(m, n)$.

Proof: The Primepower LCM Algorithm uses max instead of min.

RELATIVE PRIMALITY

DEF: Two integers m and n, not both zero, are relatively prime if $\operatorname{gcd}(m, n)=1$. NOTATION: $m \perp n$.

Proposition 2.4.6. Two numbers are relatively prime if no prime have positive exponent in both their prime power factorizations.

Proof: Immediate from the definition above.
Remark: Proposition 2.4.6 is what motivates the notation $m \perp n$. Envision the integer n expressed as a tuple in which the k th entry is the exponent (possibly zero) of the k th prime in the prime power factorization of n. The dot product of two such representations is zero iff the numbers represented are relatively prime. This is analogous to orthogonality of vectors.

MODULAR ARITHMETIC

DEF: Let n and $m>0$ be integers. The residue of dividing n by m is, if $n \geq 0$, the remainder, or otherwise, the smallest nonnegative number obtainable by adding an integral multiple of m.

Def: Let n and $m>0$ be integers. Then $\mathbf{n} \bmod \mathbf{m}$ is the residue of dividing n by m.

Prop 2.4.7. Let n and $m>0$ be integers. Then $n-(n \bmod m)$ is a multiple of m.

Example 2.4.6: $19 \bmod 7=5 ; 17 \bmod 5=2$; $-17 \bmod 5=-3$.

DEF: Let b, c, and $m>0$ be integers. Then b is congruent to c modulo m if m divides $b-c$. NOTATION: $b \equiv c \bmod m$.

Theorem 2.4.8. Let $a, b, c, d, m>0$ be integers such that $a \equiv b \bmod m$ and $c \equiv d \bmod m$. Then
$a+c \equiv b+d \bmod m$ and $a c \equiv b d \bmod m$.
Proof: Straightforward.

CAESAR ENCRYPTION

DEF: Monographic substitution is enciphering based on a permutation of an alphabet $\pi: A \rightarrow$ A. Then ciphertest is obtained from plaintext by replacing each occurrence of each letter by its substitute.

letter	A	B	C	D	E	F	\cdots	X	Y	Z
subst	Q	W	E	R	T	Y	\cdots	B	N	M

DEF: A monographic substitution cipher is called cyclic if the letters of the alphabet are represented by numbers $0,1, \ldots, 25$ and there is a number m such that $\pi(n)=m+n \bmod 26$.
An ancient Roman parchment is discovered with the following words:

HW WX EUXWH

What can it possibly mean?
Hint: Julius Caesar encrypted military messages by cyclic monographic substitution.

[^0]: Time-Complexity: $\Omega(m)$.

