1.8 FUNCTIONS

DEF: Let A and B be sets. A function f(or more completely, $f : A \to B$) is a rule that assigns to each element $a \in A$ exactly one element $f(a) \in B$, called the **value** of f at a.

We also say that $f : A \to B$ is a **mapping** from **domain** A to **codomain** B.

f(a) is called the **image of the element** a, and the element a is called a **preimage** of f(a).

The set $\{a \mid f(a) = b\}$ is called the **preimage** set of b. NOTATION: $f^{-1}(b)$.

DEF: The set $\{b \in B \mid (\exists a \in A) [f(a) = b]\}$ is called the *image of the function* $f : A \to B$.

DEF: The word **range** is commonly used to mean the image.

DEF: A function is **discrete** if its domain and codomain are finite or countable (indexed by \mathcal{Z}).

Example 1.8.1: Some functions from \mathcal{R} to \mathcal{Z} . (1) floor $\lfloor x \rfloor = \max\{k \in \mathcal{Z} \mid k \leq x\}$ image $= \mathcal{Z}$ (2) ceiling $\lceil x \rceil = \min\{k \in \mathcal{Z} \mid k \geq x\}$ im $= \mathcal{Z}$ (3) sign $\sigma(x) = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ +1 & x > 0 \end{cases}$ im $= \{-1, 0, +1\}$

Example 1.8.2: Seq of functions from \mathcal{R} to \mathcal{R} . falling powers $x^{\underline{n}} = x(x-1)\cdots(x-n+1)$. $7^{\underline{3}} = 7 \cdot 6 \cdot 5 = 210$ $\left(\frac{3}{2}\right)^{\underline{3}} = \frac{3}{2} \cdot \frac{1}{2} \cdot \left(\frac{-1}{2}\right) = \frac{-3}{8}$

Example 1.8.3: Functions in computation.

(1) C compiler maps the set of ASCII strings to the boolean set.

(2) The **halting function** maps the set of C programs to the boolean set, assigns TRUE iff this program will always halt eventually, no matter what input is supplied at run time.

Theorem 1.8.1. The halting function cannot be represented by a C program. \diamond (CS W3261)

REPRESENTATION of DISCRETE FUNCTIONS

DEF: The $n \times 2$ array representation of a discrete function is a table with two columns. The left column contains every element of the domain. The second entry in each row is the image of the first entry.

DEF: The *(full) digraphic representation* of a discrete function is a diagram with two columns of dots. The left column contains a dot for every element of the domain, and the right entry contains a dot for every element of the codomain. From each domain dot an arrow is drawn to the codomain dot representing its image.

Example 1.8.4: Representing a function.

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.

ONE-TO-ONE and ONTO FUNCTIONS

DEF: A function $f : A \to B$ is **one-to-one** if for every $b \in B$, there is at most one $a \in A$ such that f(a) = b.

Proposition 1.8.2. A discrete function is oneto-one if and only if in its digraphic representation, no codomain dot is at the head of more than one arrow. ♢

DEF: A function $f : A \to B$ is **onto** if for every $b \in B$, there is at least one $a \in A$ such that f(a) = b.

Proposition 1.8.3. A discrete function is onto if and only if in its digraphic representation, every codomain dot is at the head of at least one arrow. \diamondsuit

Example 1.8.5: The grading function of Example 1.8.4 is neither one-to-one or onto.

BIJECTIONS

DEF: A *bijection* is a function that is one-to-one and onto.

DEF: Let $f : A \to B$ be a bijection. The **inverse** function $f^{-1} : B \to A$ is the rule that assigns to each $b \in B$ the unique element $a \in A$ such that f(a) = b.

Example 1.8.6: The function $\{1 \mapsto b, 2 \mapsto c, 3 \mapsto a\}$

is a bijection. Its inverse is the function $\{a\mapsto 3, b\mapsto 1, c\mapsto 2\}$

DEF: A *permutation* is a bijection whose domain and codomain are the same set.

Example 1.8.7: The function $\{1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 1\}$

is a permutation. Its inverse is the permutation $\{1 \mapsto 3, 2 \mapsto 1, 3 \mapsto 2\}$