1.7 SET OPERATIONS

Geometric figures were used by John Venn (1834-1923) to illustrate the effect of various operations on sets called the **universal set** or the **domain of discourse**.

Remark: Not all set operations can be represented by Venn diagrams.

VENN DIAGRAMS

DEF: In a generic **Venn diagram** for a subset S of a fixed universal set U, the universal set is represented by a rectangular region in the plane and the set S is represented by a subregion.

Fig 1.7.1 Set S is shaded.

DYADIC SET OPERATIONS

DEF: The **union** of sets S and T is the set containing every object that is either in S or in T. NOTATION: $S \cup T$.

Fig 1.7.2 Union $S \cup T$ is shaded.

DEF: The *intersection* of sets S and T is the set containing every object that is in both S and T. NOTATION: $S \cap T$.

Fig 1.7.3 Intersection $S \cap T$ is shaded.

DEF: The **difference** of sets S and T is the set containing every object that is in S but not in T. NOTATION: S - T.

Fig 1.7.4 Difference S - T is shaded.

Example 1.7.1: $S = \{1, 3, 5, 7, 9\}$ $T = \{2, 3, 5, 7\}$. Then $S \cup T = \{1, 2, 3, 5, 7, 9\}$. $S \cap T = \{3, 5, 7\}$. $S - T = \{1, 9\}$.

Example 1.7.2: Cartesian product (which is dyadic) is not representable by a Venn diagram.

MONADIC SET OPERATIONS

DEF: The **complement** of a set S is the set U - S, where U is the universal set. NOTATION: \overline{S} .

Fig 1.7.5 Complement \overline{S} is shaded.

Example 1.7.3: These monadic operations are not readily representable by Venn diagrams.

- $S \rightarrow \{S\}$ (enbracement)
- $S \rightarrow P(S)$ (empowerment)

TERMINOLOGY NOTE: These two (original) names have excellent mnemonicity. The mildly frivolous character may deter their widespread adoption.

SET IDENTITIES

Various set equivalences have earned the honorific appelation *identity*. Many of them are analogous to the logical equivalences of $\S1.2$.

Example 1.7.4: The Double Negation Law $\neg \neg p \Leftrightarrow p$ has the following set-theoretic analogy:

DEF: Double Complementation Law: $\overline{\overline{S}} = S.$

Example 1.7.5: The tautology $p \lor \neg p$ (called the Law of the Excluded Middle) converts to the equivalence

 $p \lor \neg p \Leftrightarrow T,$

which has the following set-theoretic analogy:

 $S \cup \overline{S} = U.$

AVOIDING BOREDOM

Example 1.7.6: Table 1 of §1.7 (de Morgan, associativity, etc.) is good for self-study, but not for exhaustive classroom presentation.

CONFIRMING IDENTITIES with VENN DIAGRAMS

Example 1.7.7: \cap distributes over \cup . $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Example 1.7.8: \cup distributes over \cap . $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$