1.6 SETS

DEF: A set is a collection of objects. The objects are called elements or members of the set.

Notation: : $x \in S$

Example 1.6.1:

$2 \in\{5,-7, \pi$, "algebra", $2,2.718\}$
$8 \notin\{p: p$ is a prime number $\}$

SOME STANDARD SETS of NUMBERS

$\mathcal{N}=$ the set of all non-negative integers (the "natural numbers")
$\mathcal{Z}=$ the set of all integers
$\mathcal{Z}^{+}=$the set of all positive integers
$\mathcal{Q}=$ the rationals $=\left\{\frac{p}{q}: p, q \in \mathcal{Z}\right.$ and $\left.q \neq 0\right\}$
$\mathcal{R}=$ the real numbers
$\mathcal{C}=$ the complex numbers

ROSTERS for SETS

DEF: A roster specifies a finite set by enclosing in braces a list of representations of its elements. Repetitions and orderings are irrelevant to the content.

Example 1.6.2: a roster
$\{5,-7, \pi$, "algebra", $2,2.718\}$
Example 1.6.3: identical sets
$\{1,2,3,1,1,3\}=\{1,2,3\}=\{3,1,2\}$
DEF: The empty set is the set $\}$ having no elements. Notation: \emptyset.

Remark: In mathematics, there is only one empty set. However, a computer programming language may have a different empty set for every datatype.

Example 1.6.4: The empty set of character strings is equal to the empty set of lions.

DEF: A singleton set is a set with one element.
Example 1.6.5: $\{x\}$ is a singleton set.

SPECIFICATION by PREDICATES

A predicate over a well-defined set can specify any subcollection within that set. (Warning:
This "set-builder" method can lead to non-sets.)
Example 1.6.6: $\quad\{x \in \mathcal{Z}: P(x)\}$ where $P(x)$ is TRUE if x is prime.

Example 1.6.7: $\quad\left\{(x, y): x, y \in \mathcal{R} \wedge x^{2}+y^{2}=1\right\}$

OTHER WAYS to SPECIFY SETS

(1) By prose. (can also lead to non-sets).

Example 1.6.8: The set of all palindromes.
(2) By operations on other sets.

Examples soon.
(3) By recursive construction.

Examples in §3.4.

SETS as ELEMENTS of SETS

An object x is not the same as the singleton set $\{x\}$. Moreover, $\{x\} \neq\{\{x\}\}$.
Analogy: Iterative pointers to a computer object creates new objects.
$x \neq \& x \neq \& \& x$
Analogy: Iterative enquotation of a character string creates new objects.
""lion"" \neq "lion" \neq lion

RELATIONS on SETS

DEF: Set X is a subset of set Y if every element of X is also an element of Y. notation: $X \subseteq Y$.

DEF: A subset X of a set Y is proper if Y has at least one element that is not in X.

DEF: Sets X and Y are equal if each set is a subset of the other. notation: $X=Y$.

Example 1.6.9:

$(1) \emptyset$ is a proper subset of every set except itself.
(2) The integers are a subset of the real numbers.

DISAMBIGUATION: In a computer programming languages in which the integers and the reals are distinct datatypes, the integers are not a subset of the reals.

Remark: Whereas mathematics deals with objects, computation science deals with their representations.

POWER SET

DEF: The power set of a set S is the set of all subsets of S. notation: 2^{S} or $P(S)$.

Example 1.6.10:
$P(\{a, b\})=\{\emptyset,\{a\},\{b\},\{a, b\}\}$.
$P(\emptyset)=\{\emptyset\}$.
$P(P(\emptyset))=\{\emptyset,\{\emptyset\}\}$.
Proposition 1.6.1. If set S has n elements, then the power set $P(S)$ has 2^{n} elements.

CARTESIAN PRODUCT

DEF: The cartesian product of sets A and B is the set $\{(a, b) \mid a \in A \wedge b \in B\}$. notation: $A \times B$.

Example 1.6.11: $A=\{1,2\} \quad B=\{a, b, c\} \Rightarrow$ $A \times B=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c)\}$.

Proposition 1.6.2. The cartesian product $A \times B$ is empty iff either A or B is empty.

