1.6 SETS

DEF: A **set** is a collection of objects. The objects are called **elements** or **members** of the set.

NOTATION: : $x \in S$

Example 1.6.1:

 $\begin{array}{l} 2 \in \{5,-7,\pi,\text{``algebra''},2,2.718\} \\ 8 \not\in \{p:p \text{ is a prime number}\} \end{array}$

SOME STANDARD SETS of NUMBERS

 \mathcal{N} = the set of all non-negative integers (the "natural numbers")

- \mathcal{Z} = the set of all integers
- \mathcal{Z}^+ = the set of all positive integers

$$Q$$
 = the rationals = { $\frac{p}{q} : p, q \in \mathbb{Z}$ and $q \neq 0$ }

- \mathcal{R} = the real numbers
- \mathcal{C} = the complex numbers

ROSTERS for **SETS**

DEF: A **roster** specifies a finite set by enclosing in braces a list of representations of its elements. Repetitions and orderings are irrelevant to the content.

Example 1.6.2: a roster

 $\{5, -7, \pi,$ "algebra", 2, 2.718 $\}$

Example 1.6.3: identical sets

 $\{1, 2, 3, 1, 1, 3\} = \{1, 2, 3\} = \{3, 1, 2\}$

DEF: The **empty set** is the set $\{ \}$ having no elements. NOTATION: \emptyset .

Remark: In mathematics, there is only one empty set. However, a computer programming language may have a different empty set for every datatype.

Example 1.6.4: The empty set of character strings is equal to the empty set of lions.

DEF: A *singleton set* is a set with one element.

Example 1.6.5: $\{x\}$ is a singleton set.

SPECIFICATION by **PREDICATES**

A predicate over a well-defined set can specify any subcollection within that set. (Warning: This "set-builder" method can lead to non-sets.)

Example 1.6.6: $\{x \in \mathcal{Z} : P(x)\}$ where P(x) is TRUE if x is prime.

Example 1.6.7: $\{(x, y) : x, y \in \mathcal{R} \land x^2 + y^2 = 1\}$

OTHER WAYS to SPECIFY SETS

(1) By prose. (can also lead to non-sets).

Example 1.6.8: The set of all palindromes.

(2) By operations on other sets. Examples soon.

(3) By recursive construction. Examples in §3.4.

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.

SETS as ELEMENTS of SETS

An object x is not the same as the singleton set $\{x\}$. Moreover, $\{x\} \neq \{\{x\}\}$.

Analogy: Iterative pointers to a computer object creates new objects. $x \neq \&x \neq \&\&x$

Analogy: Iterative enquotation of a character string creates new objects. ""lion"" \neq "lion" \neq lion

RELATIONS on **SETS**

DEF: Set X is a **subset** of set Y if every element of X is also an element of Y. NOTATION: $X \subseteq Y$.

DEF: A subset X of a set Y is **proper** if Y has at least one element that is not in X.

DEF: Sets X and Y are **equal** if each set is a subset of the other. NOTATION: X = Y.

Example 1.6.9:

(1) Ø is a proper subset of every set except itself.
(2) The integers are a subset of the real numbers.

DISAMBIGUATION: In a computer programming languages in which the integers and the reals are distinct *datatypes*, the integers are not a subset of the reals.

Remark: Whereas mathematics deals with objects, computation science deals with their representations.

POWER SET

DEF: The **power set** of a set S is the set of all subsets of S. NOTATION: 2^S or P(S).

Example 1.6.10:

 $P(\{a, b\}) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}.$ $P(\emptyset) = \{\emptyset\}.$ $P(P(\emptyset)) = \{\emptyset, \{\emptyset\}\}.$

Proposition 1.6.1. If set S has n elements, then the power set P(S) has 2^n elements.

CARTESIAN PRODUCT

DEF: The *cartesian product* of sets A and B is the set $\{(a, b) \mid a \in A \land b \in B\}$. NOTATION: $A \times B$.

Example 1.6.11: $A = \{1, 2\}$ $B = \{a, b, c\} \Rightarrow A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}.$

Proposition 1.6.2. The cartesian product $A \times B$ is empty iff either A or B is empty.

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.