1.4 NESTED QUANTIFIERS

Example 1.4.1: Every sophomore owns a computer or has a friend in the junior class who owns a computer.
Domains S and J are the sophomores and the juniors. Predicates $C(u)$ and $F(v, w)$ mean that u owns a computer and that w is a friend of v.

$$
(\forall x \in S)[C(x) \vee(\exists y \in J)[F(x, y) \wedge C(y)]] .
$$

disambiguation: Specify the domain when not evident from context. Use brackets to identify scope of quantifiers.

TRANSPOSING QUANTIFIERS

Be careful about transposing different kinds of quantifiers.

$$
\begin{aligned}
& (\forall x)(\exists y)\left[x^{2} \leq y\right] \text { is true. } \\
& (\exists y)(\forall x)\left[x^{2} \leq y\right] \text { is false. }
\end{aligned}
$$

However, you can safely transpose two quantifiers of the same kind.

RECALL NEGATION with QUANTIFIERS

p : There exists some input data for which this program will crash.
$\neg p$: No matter what input data you supply to this program, it will not crash.

$$
\begin{aligned}
& \text { Rule 1: } \neg(\exists x)[P(x)] \Leftrightarrow(\forall x)[\neg P(x)] \\
& \text { Rule 2: } \neg(\forall x)[P(x)] \Leftrightarrow(\exists x)[\neg P(x)]
\end{aligned}
$$

CLASSROOM EXERCISE

Write the negation of this statement

$$
(\forall x)(\exists y)\left[x^{2} \leq y\right]
$$

so that no negation (\neg) appears to the left of a quantifier.

$$
\neg(\forall x)(\exists y)\left[x^{2} \leq y\right]=
$$

OPTIONAL CLASSROOM EXERCISE

An exercise about varying the subdomain from within the set of all people.

$\mathrm{B}(\mathrm{x}, \mathrm{y})$: y is the brother of x (predicate)

Specify a subdomain (maximal, if possible) in which each of the following assertions is TRUE.

1. $(\forall x)(\forall y)[B(x, y) \rightarrow B(y, x)]$.

For any two persons Bill(x) and George (y), if George(y) is a brother of $\operatorname{Bill}(\mathrm{x})$, then $\operatorname{Bill}(\mathrm{x})$ is the brother of George(y).
2. $(\exists x)(\forall y)[B(x, y) \rightarrow B(y, x)]$.

There is a person who is a brother to each of his brothers.
3. $(\forall x)(\exists y)[B(x, y) \rightarrow B(y, x)]$.

Every person has a brother to whom that person is also a brother.
4. $(\exists x)(\exists y)[B(x, y) \rightarrow B(y, x)]$.

There exist two persons, Bill (x) and George (y), such that if George is Bill's brother, then Bill is George's brother.

