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1.3 PREDICATES AND QUANTIFIERS

def: Informally, a predicate is a statement
about a (possibly empty) collection of variables
over various domains. Its truth value depends
on the values of the variables in their respective
domains.

def: Formally, a predicate is a function from
the cartesian product of the domains of the
variables to the boolean set {T, F}.

Example 1.3.1: x + 2 = 5.

Example 1.3.2: 4x− 3y > 2x.

def: The universal quantification (over x) of
a predicate P (x) is the predicate (∀x)[P (x)].

Example 1.3.3: (∀x)[x + 2 = 5].

Example 1.3.4: (∀x)[4x− 3y > 2x].
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def: The existential quantification (over x)
of a predicate P (x) is the predicate (∃x)[P (x)].

Example 1.3.5: (∃x)[x + 2 = 5].

Example 1.3.6: (∃x)[4x− 3y > 2x].

Remark: Observe that the result of quantifying
a predicate is still a predicate. Moreover, when
propositional operators are applied to predicates,
the results are predicates.

VARYING THE DOMAIN

Example 1.3.7: (∀x)[x2 = 1] is FALSE over
the domain of integers, but TRUE over
the domain {−1, 1}.

Example 1.3.8: (∃x)[x2 = −9] is FALSE
over the integers, but TRUE over the domain of
complex numbers.
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CLASSROOM EXERCISE

Consider these two condition statements.

1. (∀x)[P (x)] → (∃x)[P (x)].
Over the domain of people, this would mean “If
something is good for everybody, then it’s good
for somebody.”.

2. (∃x)[P (x)] → (∀x)[P (x)].
Over the domain of people, this could mean
“What’s good for me is good for everybody.”.

Try to think of a general property of a domain
under which statement (1) is necessarily FALSE.

Try to think of a general property of a domain
under which statement (2) is necessarily TRUE.

Hint: These general properties are based solely
on the number of elements in the domain.

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.



Chapter 1 FOUNDATIONS 1.3.4

SCOPE of QUANTIFIERS

def: The scope of a quantifier is the clause to
which it applies.

Example 1.3.9: Let x range over the integers.
P (x) : x > 2 Q(x) : x < 2

Compare these two non-equivalent propositions:
A.(∃x)[P (x) ↔ Q(x)] B.(∃x)[P (x)] ↔ (∃x)[Q(x)]

A is FALSE, but B is TRUE.

def: An unbound variable in a predicate is a
variable not within the scope of any quantifier.

Example 1.3.10: x is an unbound variable.
x + 4 > 2

Example 1.3.11: x is an unbound variable.
(∀y)[2x + 3y = 7]

Remark: A predicate with no unbound
variables is a proposition.

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.



Section 1.3 Predicates and Quantifiers 1.3.5

NEGATION with QUANTIFIERS

p: There exists some input data for which
this program will crash.

¬p: No matter what input data you supply
to this program, it will not crash.

Rule 1: ¬(∃x)[P (x)] ⇔ (∀x)[¬P (x)]

Rule 2: ¬(∀x)[P (x)] ⇔ (∃x)[¬P (x)]

CLASSROOM EXERCISE

On a New Jersey Transit commuter run, the
conductor announces:

At the next stop, all doors will not be open.

Express this in symbolic logic.
Explain what his words mean.
What words accurately express what he probably
intended?
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