1.3 PREDICATES AND QUANTIFIERS

DEF: Informally, a **predicate** is a statement about a (possibly empty) collection of variables over various domains. Its truth value depends on the values of the variables in their respective domains.

DEF: Formally, a **predicate** is a function from the cartesian product of the domains of the variables to the boolean set $\{T, F\}$.

Example 1.3.1: x + 2 = 5.

Example 1.3.2: 4x - 3y > 2x.

DEF: The universal quantification (over x) of a predicate P(x) is the predicate $(\forall x)[P(x)]$.

Example 1.3.3: $(\forall x)[x + 2 = 5].$

Example 1.3.4: $(\forall x)[4x - 3y > 2x].$

DEF: The existential quantification (over x) of a predicate P(x) is the predicate $(\exists x)[P(x)]$.

Example 1.3.5: $(\exists x)[x+2=5].$

Example 1.3.6: $(\exists x)[4x - 3y > 2x].$

Remark: Observe that the result of quantifying a predicate is still a predicate. Moreover, when propositional operators are applied to predicates, the results are predicates.

VARYING THE DOMAIN

Example 1.3.7: $(\forall x)[x^2 = 1]$ is FALSE over the domain of integers, but TRUE over the domain $\{-1, 1\}$.

Example 1.3.8: $(\exists x)[x^2 = -9]$ is FALSE over the integers, but TRUE over the domain of complex numbers.

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.

CLASSROOM EXERCISE

Consider these two condition statements.

1. $(\forall x)[P(x)] \rightarrow (\exists x)[P(x)].$ Over the domain of people, this would mean "If something is good for everybody, then it's good for somebody.".

2. $(\exists x)[P(x)] \rightarrow (\forall x)[P(x)].$ Over the domain of people, this could mean "What's good for me is good for everybody.".

Try to think of a general property of a domain under which statement (1) is necessarily FALSE.

Try to think of a general property of a domain under which statement (2) is necessarily TRUE.

Hint: These general properties are based solely on the number of elements in the domain.

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.

SCOPE of QUANTIFIERS

DEF: The **scope** of a quantifier is the clause to which it applies.

Example 1.3.9: Let x range over the integers. P(x): x > 2 Q(x): x < 2

Compare these two non-equivalent propositions: $A.(\exists x)[P(x) \leftrightarrow Q(x)] \quad B.(\exists x)[P(x)] \leftrightarrow (\exists x)[Q(x)]$ A is FALSE, but B is TRUE.

DEF: An **unbound variable** in a predicate is a variable not within the scope of any quantifier.

Example 1.3.10: x is an unbound variable. x + 4 > 2

Example 1.3.11: x is an unbound variable. $(\forall y)[2x + 3y = 7]$

Remark: A predicate with no unbound variables is a proposition.

NEGATION with **QUANTIFIERS**

p: There exists some input data for which this program will crash.

 $\neg p$: No matter what input data you supply to this program, it will not crash.

Rule 1: $\neg(\exists x)[P(x)] \Leftrightarrow (\forall x)[\neg P(x)]$ Rule 2: $\neg(\forall x)[P(x)] \Leftrightarrow (\exists x)[\neg P(x)]$

CLASSROOM EXERCISE

On a New Jersey Transit commuter run, the conductor announces:

At the next stop, all doors will not be open.

Express this in symbolic logic.

Explain what his words mean.

What words accurately express what he probably intended?