1.2 PROPOSITIONAL EQUIVALENCES

Propositional equivalences occur in mathematical proofs. They are also useful in simplifying loopexit conditions in computer programs.

DEF: Two propositional forms on the same variables are *(logically) equivalent* if they have the same result column in their truth tables. NOTATION: $F \Leftrightarrow G$.

DISAMBIGUATION: The biconditional \leftrightarrow is an operator. Logical equivalence \Leftrightarrow is a relation on propositions.

Example 1.2.1: $\neg p \lor q \Leftrightarrow p \rightarrow q$

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.

CONTRAPOSITIVE, etc.

DEF: The **contrapositive** of the propositional form $p \rightarrow q$ is the form $\neg q \rightarrow \neg p$.

Proposition 1.2.1. The contrapositive of $p \rightarrow q$ is logically equivalent to $p \rightarrow q$.

Proof:

Example 1.2.2:

conditional $p \to q$: If it is sunny, then you can find me at the beach.

contrapositive $\neg q \rightarrow \neg p$: If you can't find me at the beach, then it is not sunny.

Coursenotes by Prof. Jonathan L. Gross for use with Rosen: Discrete Math and Its Applic., 5th Ed.

DEF: The **converse** of the propositional form $p \rightarrow q$ is the form $q \rightarrow p$.

DEF: The **inverse** of the propositional form $p \rightarrow q$ is the form $\neg p \rightarrow \neg q$.

Example 1.2.3:

conditional $p \to q$: If it is sunny, then you can find me at the beach.

converse $q \rightarrow p$: If you can find me at the beach, then it is sunny.

inverse $\neg p \rightarrow \neg q$: If it is not sunny, then you can't find me at the beach.

Proposition 1.2.2. The converse and the inverse are equivalent to each other, but not to the original conditional.

Proof: Left to the reader.

CATEGORIES of PROPOSITIONAL FORMS

DEF: A *tautology* is a propositional form that is always true, no matter what truth values are assigned to its variables.

DEF: A *self-contradiction* is a propositional form that is always false, no matter what truth values are assigned to its variables.

DEF: A **contingency** is a propositional form that is neither a tautology nor a contradiction.

DISAMBIGUATION: The word "contradiction" means two propositions with opposite truth values. See Methods of Proof in §1.5.

Proposition 1.2.3. A propositional form is a tautology iff it is equivalent to the constant T.

Proof: This is simply a rephrasing.

Proposition 1.2.4. A propositional form is a self-contradiction iff it is equivalent to the constant F.

Proof: This is a rephrasing.

 \diamond

LAWS of LOGIC

Various logical equivalences and tautologies have earned the honorific appelation *law*.

DEF: **Double Negation Law:** $\neg \neg p \Leftrightarrow p$.

DEF: Law of the Excluded Middle: $p \lor \neg p$.

AVOIDING BOREDOM

First Law of Good Pedagogy: Boredom does not help anyone to learn.

Example 1.2.4: Table 5 of §1.2 (de Morgan, associativity, etc.) is excellent for self-study, but not for exhaustive classroom presentation.