HW # 10.2

- a) We need to write all the terms that have \overline{x} in them. Thus the answer is $\overline{x}yz + \overline{x}y\overline{z} + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$.
 - b) We need to write all the terms that include either \overline{x} or \overline{y} . Thus the answer is $x \overline{y} z + x \overline{y} \overline{z} + \overline{x} y z + \overline{x} y \overline{z} + \overline{x} y z + \overline{x} y \overline{z} + \overline{$ $\overline{x}\,\overline{y}\,z + \overline{x}\,\overline{y}\,\overline{z}$.
 - c) We need to include all the terms that have both \overline{x} and \overline{y} . Thus the answer is $\overline{x}\,\overline{y}\,z + \overline{x}\,\overline{y}\,\overline{z}$.
 - d) We need to include all the terms that have at least one of \overline{x} , \overline{y} , and \overline{z} . This is all the terms except xyz, so the answer is $x y \overline{z} + x \overline{y} z + x \overline{y} \overline{z} + \overline{x} y z + \overline{x} y \overline{z} + \overline{x} \overline{y} z + \overline{x} \overline{y} \overline{z}$.
 - We need to use De Morgan's law to replace each occurrence of s+t by $\overline{(\overline{s}\,\overline{t})}$, simplifying by use of the double complement law if possible.

 - a) $(x+y)+z=\overline{(\overline{(x+y)}\,\overline{z})}=\overline{(\overline{x}\,\overline{y}\,\overline{z})}$ b) $x+\overline{y}\,(\overline{x}+z)=\overline{(\overline{x}\,\overline{(\overline{y}\,(\overline{x}+z))})}=\overline{(\overline{x}\,\overline{(\overline{y}\,(\overline{x}\overline{z}))})}$
 - c) In this case we can just apply De Morgan's law directly, to obtain $\overline{x}\,\overline{\overline{y}}=\overline{x}\,y$.
 - d) The second factor is changed in a manner similar to part (a). Thus the answer is $\overline{x}(\overline{x}\,y\,z)$.
 - a) We use the definition of |. If x = 1, then $x \mid x = 0$; and if x = 0, then $x \mid x = 1$. These are precisely the corresponding values of \overline{x} .
 - b) We can construct a table to look at all four cases, as follows. Since the fourth and fifth columns are equal, the expressions are equivalent.

\underline{x}	\underline{y}	$x \mid y$	$(x \mid y) \mid (x \mid y)$	\underline{xy}
1	1	0	1	1
1	0	` 1	0	0
0	1	1	0	0
0	0	. 1	0	0

c) We can construct a table to look at all four cases, as follows. Since the fifth and sixth columns are equal, the expressions are equivalent.

\underline{x}	\underline{y}	$x \mid x$	$y \mid y$	$(x \mid x) \mid (y \mid y)$	x+y
1	1	0	0	1	1,
1	0	0	1	1	1
0	1	1	0	1	1
0	0	1	1	0	0