HW # 10.2 - a) We need to write all the terms that have \overline{x} in them. Thus the answer is $\overline{x}yz + \overline{x}y\overline{z} + \overline{x}\overline{y}z + \overline{x}\overline{y}\overline{z}$. - b) We need to write all the terms that include either \overline{x} or \overline{y} . Thus the answer is $x \overline{y} z + x \overline{y} \overline{z} + \overline{x} y z + \overline{x} y \overline{z} + \overline{x} y z + \overline{x} y \overline{z} \overline{$ $\overline{x}\,\overline{y}\,z + \overline{x}\,\overline{y}\,\overline{z}$. - c) We need to include all the terms that have both \overline{x} and \overline{y} . Thus the answer is $\overline{x}\,\overline{y}\,z + \overline{x}\,\overline{y}\,\overline{z}$. - d) We need to include all the terms that have at least one of \overline{x} , \overline{y} , and \overline{z} . This is all the terms except xyz, so the answer is $x y \overline{z} + x \overline{y} z + x \overline{y} \overline{z} + \overline{x} y z + \overline{x} y \overline{z} + \overline{x} \overline{y} z + \overline{x} \overline{y} \overline{z}$. - We need to use De Morgan's law to replace each occurrence of s+t by $\overline{(\overline{s}\,\overline{t})}$, simplifying by use of the double complement law if possible. - a) $(x+y)+z=\overline{(\overline{(x+y)}\,\overline{z})}=\overline{(\overline{x}\,\overline{y}\,\overline{z})}$ b) $x+\overline{y}\,(\overline{x}+z)=\overline{(\overline{x}\,\overline{(\overline{y}\,(\overline{x}+z))})}=\overline{(\overline{x}\,\overline{(\overline{y}\,(\overline{x}\overline{z}))})}$ - c) In this case we can just apply De Morgan's law directly, to obtain $\overline{x}\,\overline{\overline{y}}=\overline{x}\,y$. - d) The second factor is changed in a manner similar to part (a). Thus the answer is $\overline{x}(\overline{x}\,y\,z)$. - a) We use the definition of |. If x = 1, then $x \mid x = 0$; and if x = 0, then $x \mid x = 1$. These are precisely the corresponding values of \overline{x} . - b) We can construct a table to look at all four cases, as follows. Since the fourth and fifth columns are equal, the expressions are equivalent. | \underline{x} | \underline{y} | $x \mid y$ | $(x \mid y) \mid (x \mid y)$ | \underline{xy} | |-----------------|-----------------|------------|------------------------------|------------------| | 1 | 1 | 0 | 1 | 1 | | 1 | 0 | ` 1 | 0 | 0 | | 0 | 1 | 1 | 0 | 0 | | 0 | 0 | . 1 | 0 | 0 | c) We can construct a table to look at all four cases, as follows. Since the fifth and sixth columns are equal, the expressions are equivalent. | \underline{x} | \underline{y} | $x \mid x$ | $y \mid y$ | $(x \mid x) \mid (y \mid y)$ | x+y | |-----------------|-----------------|------------|------------|------------------------------|-----| | 1 | 1 | 0 | 0 | 1 | 1, | | 1 | 0 | 0 | 1 | 1 | 1 | | 0 | 1 | 1 | 0 | 1 | 1 | | 0 | 0 | 1 | 1 | 0 | 0 |