Section 10.1 Boolean Functions

For part (d) we have

\underline{x}	y	z	\overline{x}	\overline{y}	\overline{z}	\underline{xz}	$\overline{x}\overline{z}$	$\underline{xz + \overline{x}\overline{z}}$	$\overline{y}(xz + \overline{x}\overline{z})$
1	1	1	0	0	0	1	0	1	0
1	1	0	0	0	1	0	0	0	0
1	0	1	0	1	0	1	0	1	1
1	0	0	0	1	1	0	0	0	0
0	1	1	1	0	0	0	0	0	0
0	1	0	1	0	1	0	1	1	0
0	0	1	1	1	0	0	0	0	0
0	0	0	1	1	1	0	1	1	1

^{22.} a) Since $0 \oplus 0 = 0$ and $1 \oplus 0 = 1$, this expression simplifies to x.

b) Since $0 \oplus 1 = 1$ and $1 \oplus 1 = 0$, this expression simplifies to \overline{x} .

c) Looking at the definition, we see that $x \oplus x = 0$ for all x.

d) This is similar to part (c); this time the expression always equals 1.