Section 10.1 Boolean Functions For part (d) we have | \underline{x} | y | z | \overline{x} | \overline{y} | \overline{z} | \underline{xz} | $\overline{x}\overline{z}$ | $\underline{xz + \overline{x}\overline{z}}$ | $\overline{y}(xz + \overline{x}\overline{z})$ | |-----------------|---|---|----------------|----------------|----------------|------------------|----------------------------|---|---| | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | **^{22.}** a) Since $0 \oplus 0 = 0$ and $1 \oplus 0 = 1$, this expression simplifies to x. b) Since $0 \oplus 1 = 1$ and $1 \oplus 1 = 0$, this expression simplifies to \overline{x} . c) Looking at the definition, we see that $x \oplus x = 0$ for all x. d) This is similar to part (c); this time the expression always equals 1.