12. We just add adjacent numbers in this row to obtain the next row (starting and ending with 1, of course):

\[
1 \quad 11 \quad 55 \quad 165 \quad 330 \quad 462 \quad 462 \quad 330 \quad 165 \quad 55 \quad 11 \quad 1
\]

14. Using the factorial formulas for computing binomial coefficients, we see that \(\binom{n}{k-1} = \frac{k}{n-k+1} \binom{n}{k} \). If \(k \leq n/2 \), then \(\frac{k}{n-k+1} < 1 \), so the "less than" signs are correct. Similarly, if \(k > n/2 \), then \(\frac{k}{n-k+1} > 1 \), so the "greater than" signs are correct. The middle equality is Corollary 1 in Section 4.3, since \(\lceil n/2 \rceil + \lfloor n/2 \rfloor = n \). The equalities at the ends are clear.