The base case is clear, since $1 \cdot 1! = 2! - 1$. Assuming the inductive hypothesis, we then have $1 \cdot 1! + 2 \cdot 2! + \dots + k \cdot k! + (k+1) \cdot (k+1)! = (k+1)! - 1 + (k+1) \cdot (k+1)!$ = (k+1)!(1+k+1) - 1 = (k+2)! - 1,

as desired.

- The base case is n=2, and indeed $2! < 2^2$. Assume the inductive hypothesis. Then $(k+1)! = (k+1)k! < (k+1)k^k < (k+1)(k+1)^k = (k+1)^{k+1}$.
- 16. The base case reduces to 6 = 6. Assuming the inductive hypothesis we have

$$1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + k(k+1)(k+2) + (k+1)(k+2)(k+3)$$

$$= \frac{k(k+1)(k+2)(k+3)}{4} + (k+1)(k+2)(k+3)$$

$$= (k+1)(k+2)(k+3)\left(\frac{k}{4} + 1\right)$$

$$= \frac{(k+1)(k+2)(k+3)(k+4)}{4}.$$

The statement is true for the base case, n = 0, since $3 \mid 0$. Suppose that $3 \mid (k^3 + 2k)$. We must show that $3 \mid ((k+1)^3 + 2(k+1))$. If we expand the expression in question, we obtain $k^3 + 3k^2 + 3k + 1 + 2k + 2 = (k^3 + 2k) + 3(k^2 + k + 1)$. By the inductive hypothesis, 3 divides $k^3 + 2k$, and certainly 3 divides $3(k^2 + k + 1)$, so 3 divides their sum, and we are done.