6. Under the hypotheses, we have \(c = as \) and \(d = bt \) for some \(s \) and \(t \). Multiplying we obtain \(cd = ab(st) \), which means that \(ab \mid cd \), as desired.

8. The numbers 19, 101, 107, and 113 are prime, as we can verify by trial division. The numbers 27 = 3³ and 93 = 3 · 31 are not prime.

10. In each case we can carry out the arithmetic on a calculator.
 a) Since \(8 \cdot 5 = 40 \) and \(44 - 40 = 4 \), we have quotient \(44 \ \text{div} \ 8 = 5 \) and remainder \(44 \ \text{mod} \ 8 = 4 \).
 b) Since \(21 \cdot 37 = 777 \), we have quotient \(777 \ \text{div} \ 21 = 37 \) and remainder \(777 \ \text{mod} \ 21 = 0 \).
 c) As above, we can compute \(123 \ \text{div} \ 19 = 6 \) and \(123 \ \text{mod} \ 19 = 9 \). However, since the dividend is negative and the remainder is nonzero, the quotient is \(-(6 + 1) = -7 \) and the remainder is \(19 - 9 = 10 \). To check that \(-123 \ \text{div} \ 19 = -7 \) and \(-123 \ \text{mod} \ 19 = 10 \), we note that \(-123 = (-7)(19) + 10 \).
 d) Since \(1 \ \text{div} \ 23 = 0 \) and \(1 \ \text{mod} \ 23 = 1 \), we have \(-1 \ \text{div} \ 23 = -1 \) and \(-1 \ \text{mod} \ 23 = 22 \).
 e) Since \(2002 \ \text{div} \ 87 = 23 \) and \(2002 \ \text{mod} \ 87 = 1 \), we have \(-2002 \ \text{div} \ 87 = -24 \) and \(2002 \ \text{mod} \ 87 = 86 \).
 f) Clearly \(0 \ \text{div} \ 17 = 0 \) and \(0 \ \text{mod} \ 17 = 0 \).
 g) We have \(1234567 \ \text{div} \ 1001 = 1233 \) and \(1234567 \ \text{mod} \ 1001 = 334 \).
 h) Since \(100 \ \text{div} \ 101 = 0 \) and \(100 \ \text{mod} \ 101 = 100 \), we have \(-100 \ \text{div} \ 101 = -1 \) and \(-100 \ \text{mod} \ 101 = 1 \).

18. Since these numbers are small, the easiest approach is to find the prime factorization of each number and look for any common prime factors.
 a) Since \(21 = 3 \cdot 7 \), \(34 = 2 \cdot 17 \), and \(55 = 5 \cdot 11 \), these are pairwise relatively prime.
 b) Since \(85 = 5 \cdot 17 \), these are not pairwise relatively prime.
 c) Since \(25 = 5^2 \), \(41 \) is prime, \(49 = 7^2 \), and \(64 = 2^6 \), these are pairwise relatively prime.
 d) Since \(17, 19, \) and \(23 \) are prime and \(18 = 2 \cdot 3^2 \), these are pairwise relatively prime.

32. We have \(1000 = 2^3 \cdot 5^3 \) and \(625 = 5^4 \), so \(\gcd(1000, 625) = 5^3 = 125 \), and \(\text{lcm}(1000, 625) = 2^3 \cdot 5^4 = 5000 \). As expected, \(125 \cdot 5000 = 625000 = 1000 \cdot 625 \).

42. From \(a \equiv b \pmod{m} \) we know that \(b = a + sm \) for some integer \(s \). Similarly, \(d = c + tm \). Subtracting, we have \(b - d = (a - c) + (s - t)m \), which means that \(a - c \equiv b - d \pmod{m} \).

54. We just need to “subtract 3” from each letter. For example, E goes down to B, and B goes down to Y.
 a) BLUE JEANS b) TEST TODAY c) EAT DIM SUM

56. We have the 2x2 matrix A =...