- 10. a) $\forall x F(x, \text{Fred})$ b) $\forall y F(\text{Evelyn}, y)$ c) $\forall x \exists y F(x, y)$ d) $\neg \exists x \forall y F(x, y)$ e) $\forall y \exists x F(x, y)$
 - f) $\neg \exists x [F(x, \text{Fred}) \land F(x, \text{Jerry})]$
 - (g) $\exists y_1 \exists y_2 [F(\text{Nancy}, y_1) \land F(\text{Nancy}, y_2) \land y_1 \neq y_2 \land \forall y (F(\text{Nancy}, y) \rightarrow (y = y_1 \lor y = y_2))]$
 - (h) $\exists y [\forall x F(x, y) \land \forall z (\forall x F(x, z) \rightarrow z = y)]$ i) $\neg \exists x F(x, x)$
 - j) $\exists x \exists y [x \neq y \land F(x,y) \land \forall z ((F(x,z) \land z \neq x) \rightarrow z = y)]$ (We do not assume that this sentence is asserting that this person can fool her/himself.)
 - 18. a) $\forall f (H(f) \to \exists c A(c))$, where A(x) means that console x is accessible, and H(x) means that fault condition x is happening
 - b) $(\forall u \exists m (A(m) \land S(u, m))) \rightarrow \forall u R(u)$, where A(x) means that the archive contains message x, S(x, y) means that user x sent message y, and R(x) means that the e-mail address of user x can be retrieved
 - \bigcirc $(\forall b \exists m \ D(m,b)) \leftrightarrow \exists p \neg C(p)$, where D(x,y) means that mechanism x can detect breach y, and C(x) means that process x has been compromised
 - d) $\forall x \forall y \ (x \neq y \rightarrow \exists p \exists q \ (p \neq q \land C(p, x, y) \land C(q, x, y)))$, where C(p, x, y) means that path p connects endpoint x to endpoint y
 - e) $\forall x ((\forall u K(x, u)) \leftrightarrow x = \text{SysAdm})$, where K(x, y) means that person x knows the password of user y
- 36. a) In English, the negation is "Some student in this class does not like mathematics." With the obvious propositional function, this is $\exists x \neg L(x)$.
 - b) In English, the negation is "Every student in this class has seen a computer." With the obvious propositional function, this is $\forall x S(x)$.
 - In English, the negation is "For every student in this class, there is a mathematics course that this student has not taken." With the obvious propositional function, this is $\forall x \exists c \neg T(x,c)$.
 - d) As in Exercise 15f, let P(z,y) be "Room z is in building y," and let Q(x,z) be "Student x has been in room z." Then the original statement is $\exists x \forall y \exists z (P(z,y) \land Q(x,z))$. To form the negation, we change all the quantifiers and put the negation on the inside, then apply De Morgan's law. The negation is therefore $\forall x \exists y \forall z (\neg P(z,y) \lor \neg Q(x,z))$, which is also equivalent to $\forall x \exists y \forall z (P(z,y) \to \neg Q(x,z))$. In English, this could be read, "For every student there is a building such that for every room in that building, the student has not been in that room."