Now n-m is even by supposition and n^2+nm+m^2 is an integer (being a sum of products of integers). Thus $(n-m)(n^2+nm+m^2)$ is the product of an even integer and an integer, and so, by exercise 28, it is even. Hence, by substitution, n^3-m^3 is even [as was to be shown]. (Alternatively, the given statement can be proved by direct use of the definition of even, without

reference to exercise 28.)

Proof: Suppose a and b are any nonnegative real numbers. Then

$$\sqrt{a}$$
 = that unique nonnegative real number u such that u^2 equals a

and

$$\sqrt{b}$$
 = that unique nonnegative real number v such that v^2 equals b

By substitution and the laws of exponents, $ab = u^2v^2 = (uv)^2$. So uv is that unique nonnegative real number such that $(uv)^2 = ab$. Hence $\sqrt{ab} = uv = \sqrt{a}\sqrt{b}$.